
REDACTED VERSION

French Ltd. Project

MONTHLY PROGRESS REPORT

Submitted to:

U.S. Environmental Protection Agency - Region 6 and Texas Natural Resource Conservation Commission

June, 1995

French Ltd. Project

FLTG, Inc.

Crosby, Texas

MONTHLY PROGRESS REPORT

Submitted to:

U.S. Environmental Protection Agency - Region 6 and Texas Natural Resource Conservation Commission

June, 1995

CONTENTS

1.0	INTRO	DUCTION		1-1							
2.0	SUMM	ARY		2-1							
	2.1	Summar	y of Activities and Progress	2-1							
		2.1.1	Health and Safety	2-1							
		2.1.2	Quality/QAQC/Data Base Management	2-2							
		2.1.3	Lagoon Remediation	2-2							
		2.1.4	Ambient Air Management	2-2							
		2.1.5	Aquifer Remediation	2-3							
		2.1.6	Groundwater Treatment	2-4							
		2.1.7	Wetlands Restoration	2-4							
		2.1.8	Site Management and Issues	2-5							
	2.2	Problem	Areas and Recommended Solutions	2-10							
	2.3	Problems	s Resolved	2-11							
	2.4	Deliveral	bles Submitted	2-11							
	2.5	Upcoming/Ongoing Events and Activities									
	2.6	Key Staffing Changes									
	2.7	Percent Complete									
	2.8	Schedule	ə	2-13							
	2.9	Operatio	ns and Monitoring Data	2-13							
	2.10	Credits A	Accrued/Applied	2-14							
	2.11	Commur	nity Relations	2-15							
3.0	LAGOO	N		3-1							
	3.1	Summar	y of Activities	3-1							
	3.2	Problems	s and Response Action	3-1							
	3.3	Problems	s Resolved	3-1							
	3.4	Deliveral	bles Submitted	3-2							
	3.5	Upcomir	ng Events and Activities	3-2							
4.0	GROUN	IDWATER	AND SUBSOIL REMEDIATION	4-1							
	4.1	Summar	y of Activities	4-1							
		4.1.1	Operation of Production and Injection Well Systems	4-1							
		4.1.2	Operational Monitoring	4-1							
		4.1.3	Data Management and Evaluation	4-1							
	4.2	Problem	s and Response Actions	4-1							

CONTENTS (Continued)

	4.3	Pending Is	ssues	4-14
		4.3.1	S1 Unit Pulse Pumping	4-14
	4.4	Operation	al Refinements	4-14
	4.5	Data Sum	mary and Discussion	4-14
		4.5.1	Groundwater Production and Injection	4-14
		4.5.2	Groundwater Levels and Flow Directions	4-14
		4.5.3	TOC in Shallow Groundwater	4-14
		4.5.4	In-Situ Bioremediation	4-14
	4.6	Schedule		4-14
5.0	GROUN	IDWATER	TREATMENT PLANT	5-1
	5.1	Summary	of Activities	5-1
	5.2	Inoculum	Nutrient Addition	5-2
	5.3	Maintena	nce	5-2
	5.4	Operating	Data	5-2
6.0	AMBIE	NT AIR MA	NAGEMENT	6-1
	6.1	Summary	of Activities	6-1
	6.2	Problems	and Response Action	6-1
	6.3	Problems	Resolved	6-2
	6.4	On-going	Events/Activities	6-2
7.0	QUALIT	TY ASSUR	ANCE/QUALITY CONTROL	7-1
	7.1	Summary	of Activities	7-1
		7.1.1	Sampling	7-1
		7.1.2	Data Validation Activities Summary	7-1
			7.1.2.1 Treated Water Samples	7-1
			7.1.2.2 Groundwater Samples	7-1
			7.1.2.3 Other Samples	7-1
	7.2	Data Vali	dation QC Summary and Discussion	7-2
		7.2.1	Level I and Level II QC Philosophy	7-2
		7.2.2	QA Issues	7-2
			7.2.2.1 Matrix Interference on Groundwater	
			Samples	7-2
		7.2.3	Completeness Summaries	7-8

CONTENTS (Continued)

8.0	SITE M	AINTENA	NCE	8-1							
	8.1	Summa	ry of Activities	8-1							
		8.1.1	General Housekeeping	8-1							
		8.1.2	Purchasing	8-1							
		8.1.3	Equipment Maintenance	8-1							
	8.2	Visitors		8-1							
	8.3	Emergency Equipment									
		8.3.1	Flood Gate Test	8-3							
		8.3.2	P-8 Auxiliary Pump	8-3							
		8.3.3	Fire Extinguishers	8-4							
	8.4 Security										
	8.5	8.5 Operator Training									
	8.6	Data Ma	anagement	8-4							
	8.7	Personn	el Monitoring	8-4							
	8.8	OVM S	ystem	8-4							
	8.9	Reposit	ory	8-4							
	8.10	Meteoro	ological Data	8-4							
9.0	WETLA	NDS RES	STORATION	9-1							
	9.1	Summa	ry of Activities and Progress	9-1							
	9.2	Problem	Areas and Solutions	9-2							
	9.3	Problem	s Resolved	9-2							
	9.4	Delivera	bles Submitted	9-2							
	9.5	Upcomi	ng Events and Activities	9-2							

CONTENTS (Continued)

LIST OF ILLUSTRATIONS

LIST OF FIGURES

4-1	Production Flows	4-7
4-2	Injection Flows	4-8
4-3	Water Levels, S1 Unit, June 1995	4-9
4-4	Water Levels, INT Unit, June 1995	4-10
LIST	OF TABLES	
2-1	Ambient Air Management Time Integrated Exposure Data	2-6
2-2	Project Quality	2-7
2-3	Treated Water Results Summary	2-8
4-1	Groundwater System Operation, June, 1995	4-2
4-2	Daily Groundwater Production and TOC Removal, June, 1995	4-3
4-3	Daily Injection Flows, June, 1995	4-4
4-4	Average Production and Injection Flow Rates, June, 1995	4-5
4-5	Operational Monitoring, June, 1995	4-6
4-6	Schedule for Shut-Down of INT and S1 Pumping and Injection Wells	4-11
4-7	History of TOC Concentrations at S1 Production Wells	4-15
4-8	History of TOC Concentrations at INT Production Wells	4-16
4-9	Dissolved Oxygen at Production Wells	4-17
4-10	Dissolved Oxygen at Monitoring Wells	4-19
5-1	Preventive Maintenance	5-3
5-2	Treated Water Results Summary	5-4
7-1	Samples Collected - June, 1995	7-3
7-2	Scheduled Sampling Events, June, 1995	7-6
7-3	Treated Water QC Failure Summary	7-7
7-4	Completeness Summary, M03A Treated Water - Volatile	
	Organics Analyses	7-9
7-5	Completeness Summary, MO3A Treated Water - Semivolatile	
	Organic Analyses	7-10

MONTHLY PROGRESS REPORT Table of Contents

French Ltd. Project

FLTG, Incorporated

CONTENTS (Continued)

7-6	Completeness Summary, M03A Treated Water - PCB Analyses	7-11
7-7	Completeness Summary, M03A Treated Water - Metals Analyses	7-12
7-8	Completeness Summary, M03A Treated Water - Miscellaneous	
	Parameters Analyses	7-15
8-1	On-Site Employee Contaminant Limits (From OSHA 29 CFR 1910 Subpart Z).	8-5
8-2	Rainfall Data for June, 1995	8-6

CONTENTS (Continued)

LIST OF ATTACHMENTS

8A Repository Status Report: June, 1995

LIST OF APPENDICES

Appendix A - None

Appendix B - None

Appendix C - Analytical Results -

Samples Dated June, 1995

Date Received	<u>Project I.D.</u>	Date Received
6/04/95	M04B0041	6/22/95
6/04/95	M01D0057	6/24/95
6/08/95	M03A0338	6/24/95
6/11/95	M04B0042	6/25/95
6/11/95	S14C0008	6/25/95
6/11/95	M03A0339	6/28/95
6/15/95	M04B0043	6/28/95
6/16/95	M06C0028	6/28/95
6/17/95	S14C0009	6/28/95
6/17/95	M08C0012	6/29/95
6/21/95	M08D0015	6/29/95
	6/04/95 6/04/95 6/08/95 6/11/95 6/11/95 6/11/95 6/15/95 6/16/95 6/17/95	6/04/95 M04B0041 6/04/95 M01D0057 6/08/95 M03A0338 6/11/95 M04B0042 6/11/95 S14C0008 6/11/95 M03A0339 6/15/95 M04B0043 6/16/95 M06C0028 6/17/95 S14C0009 6/17/95 M08C0012

1.0 INTRODUCTION

This report covers the activities of FLTG, Inc. and the French Limited Project for June, 1995. FLTG, Inc. manages the project for the French Limited Task Group of Potentially Responsible Parties.

During June, 1995, the project team focused on the following activities and issues:

- Health, Safety, and Quality.
- Safety awareness.
- Contractor safety.
- Safety on multiple job assignments.
- HAZOP of daily work assignments.
- Detecting and correcting work place hazards.
- Vegetation evaluation in Cell E.
- Operation and maintenance of the aquifer remediation system.
- In-situ aquifer bioremediation.
- Water treatment plant operation and maintenance.
- Operation of the data base management system.
- Wetlands project construction.
- This report includes:
 - A summary of June activities, issues, and progress.

French Ltd. Project

MONTHLY PROGRESS REPORT Introduction

FLTG, Incorporated

- Lagoon area activities.
- Groundwater and Subsoil Remediation activities, issues, and progress.
- Groundwater Treatment Plant activities and issues.
- Ambient Air Management.
- QA/QC status and data.
- Site management activities and issues.
- Wetlands restoration activities, issues, and progress.

2.0 SUMMARY

2.1 Summary of Activities and Progress

2.1.1 Health and Safety

Emphasized the safety issues associated with multiple job assignments and limited support personnel; emphasized the need to be flexible and responsive to personal limitations.

A minor finger cut when handling a well screen; only on-site first aid was required.

All site workers earned the June safety bonus.

Conducted safety meetings and job inspections at the start of each shift; reviewed safety issues before starting all jobs.

All employees and contractors attended daily safety meetings.

Conducted daily mini-HAZOP of all specific jobs.

Supervision made 160 specific on-the-job safety contacts.

Emphasized the causes, symptoms, and treatment of heat stress.

Inspected and certified all fire extinguishers.

Emphasized the hazards and precautions associated with working around moving equipment.

Conducted 22 specific health and safety inspections.

Logged all safety issues each shift; less than 24-hour response to all safety issues.

The daily raffle ticket safety awareness program has been effective in maintaining daily safety awareness among all site personnel and contractors.

Conducted personnel exposure monitoring, and all results were within acceptable levels.

2.1.2 Quality/QAQC/Data Base Management

The total quality process was used. The status of the goals is shown on Table 2-2.

All quality goals were met.

Raw data is being validated as per the plan.

The most recent results are in Table 2-1.

The data base management system operated with no problems or delays.

There were no data or reports rejected due to errors.

American Analytical continued to provide quality data on time.

2.1.3 Lagoon

Maintained a high level of biological activity in Cell D; OUR and HMB were high. Added O_2 to Cell D using a downdraft aerator for six days.

Continued periodic subsurface injection of Cell D water in Cell E; there were no problems or issues, and adequate gradient control was maintained.

Continued evaluation of various tree and bush species for passive dewatering of the subsurface inside the floodwall.

Evaluating long-term surface water source options for the lagoon area.

Tested floodwall gate closure.

Tested the wall thickness at several locations below the groundwater elevation; there has been no corrosion or erosion.

2.1.4 Ambient Air Management

Ambient air quality was manually checked daily with portable TVOC analyzers, and no response action was required.

Air quality was continuously monitored in all potential exposure areas and on all special jobs.

Time-integrated samples were collected in three work areas, and the results indicated no exposure; the data is shown in Table 2-1.

2.1.5 Aquifer Remediation

Monitored status of DNAPL plumes.

Continued routine S1 oxygen injection in target areas.

Continued INT oxygen and nutrient injection in target areas.

Continued to evaluate ways to increase INT remediation rates in the INT-11 wall area and the SW area and to increase S1 remediation rated in the S1-63 area and the S1-121 area.

Started installation of six new INT pumping wells in the southwest area.

Evaluated various ways to decrease back-pressure on critical INT production wells.

Converting two INT pumping wells to injection wells; converted two INT monitoring wells to pumping wells.

Flows continued to increase in the sand fracture areas.

Operated vacuum-enhanced pumping systems for specific INT wells.

Issued weekly well status and performance reports.

Inspected and adjusted all wells each day.

Continued daily maintenance of recovery and injection wells.

Completed monthly well measurements and sampling; TOC levels continue to decrease; DO levels continue to increase.

Maintained O₂ content of injection water at about 40-45 ppm.

Shut off 4 more production or injection wells in areas that have reached aquifer remediation shut-off criteria; monthly sampling indicated no rebound and indicated favorable gradient control; monthly sampling indicated several well conversions and the installation of several new INT wells.

2.1.6 Groundwater Treatment

The treated water did not require carbon treatment to maintain effluent criteria.

There was no downtime.

Revised the sand filter operating procedures to accommodate low flows.

The water treatment plant effluent data is shown in Table 2-3. All effluent samples met criteria.

TOC input to T-101 continued to decrease.

The process operators collected all the process water and ground water samples.

2.1.7 Wetlands Restoration

Dewatering was required after every rainfall.

Completed final grading and topsoil replacement.

Corrected the flow channels to the river; the tidal flows met specifications.

The civil construction contractor completed work and demobilized from the site.

Started the 30-day level cycling to saturate the marsh areas with saltwater.

Reviewed status, progress, and issues with the TNRCC and other agencies.

Continued selective planting; located a nearby, compatible source for salt water marshtype vegetation.

The 80 yd³ yards of affected soils that had been excavated were sampled, classified as class II (non-hazardous), profiled, and shipped off-site for disposal.

2.1.8 Site Management and Issues

Used the on-site laboratory to process all the operational control samples.

Reviewed site progress and issues in detail with EPA and TNRCC on a regular basis.

Validated all analytical data as per the QAQC plan.

Reviewed project status and issues each day to ensure focus on critical issues - safety, quality, cost, INT zone progress, and wetlands construction.

Issued weekly cost, schedule, and maintenance reports.

Reviewed progress on issues and action plans each week.

Reduced aquifer remediation operational and maintenance requirements.

Reduced technical support MH's.

Reduced site security requirements.

Initiated agency oversight cost discussions with EPA.

Consolidated support facilities to north of Gulf Pump Road.

TABLE 2-1

Ambient Air Management Time Integrated Exposure Data

Compound PPM % of PEL PPM %	T-101 Area
Compound PPM % of PEL PPM %	
Bromomethane 5 0.000 0.000 0.000 0.000 0.000 Vinyl chloride 1 0.000 0.000 0.000 0.000 0.000 Chloroethane 1000 0.007 0.003 0.003 0.001 0.00 Dichloromethane 50 0.007 0.003 0.003 0.001 0.00 Acetone 750 0.001 0.004 0.000 0.000 0.002 Carbon disulfide 10 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 1,2-Dichloroethane 10 0.011 0.001 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000	PEL PPM
Bromomethane 5 0.000 0.000 0.000 0.000 0.000 Vinyl chloride 1 0.000 0.000 0.000 0.000 0.000 Chloroethane 1000 0.007 0.003 0.003 0.001 0.00 Dichloromethane 50 0.007 0.003 0.003 0.001 0.00 Acetone 750 0.001 0.004 0.000 0.000 0.002 Carbon disulfide 10 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 1,2-Dichloroethane 10 0.001 0.001 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000	
Vinyl chloride 1 0.000 0.000 0.000 0.000 0.000 Chloroethane 1000 0.000 0.000 0.000 0.000 0.000 Dichloromethane 50 0.007 0.003 0.003 0.001 0.00 Acetone 750 0.001 0.004 0.000 0.000 0.002 0.00 Carbon disulfide 10 0.000	0.002
Chloroethane 1000 0.000 0.000 0.000 0.000 0.000 Dichloromethane 50 0.007 0.003 0.003 0.001 0.00 Acetone 750 0.001 0.004 0.000 0.000 0.002 Carbon disulfide 10 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 200 0.000 0.001 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	0.000
Dichloromethane 50 0.007 0.003 0.003 0.001 0.002 Acetone 750 0.001 0.004 0.000 0.002 0.00 Carbon disulfide 10 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 trans-1,2-Dichloroethe 200 0.000 0.001 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	0.000
Acetone 750 0.001 0.004 0.000 0.002 0.002 Carbon disulfide 10 0.000 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	0.000
Acetone 750 0.001 0.004 0.000 0.002 0.002 Carbon disulfide 10 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 trans-1,2-Dichloroethe 200 0.001 0.001 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	0.001
1,1-Dichloroethene 5 0.000 0.000 0.000 0.000 1,1-Dichloroethane 100 0.000 0.000 0.000 0.000 0.000 trans-1,2-Dichloroethe 200 0.000 0.001 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	
1,1-Dichloroethene 5 0.000	0.000
trans-1,2-Dichloroethe 200 0.000 0.001 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	
trans-1,2-Dichloroethe 200 0.000 0.001 0.000 0.000 0.000 Chloroform 10 0.011 0.001 0.000 0.000 0.000 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	0.001
Chloroform 10 0.011 0.001 0.000 0.000 0.21 1,2-Dichloroethane 10 0.000 0.000 0.000 0.000 0.000 2-Butanone 200 0.000 0.000 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	
2-Butanone 200 0.000 0.001 0.000 0.000 0.000 1,1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	
2-Butanone 200 0.000 0.001 0.000 0.000 0.000 1.1,1-Trichloroethane 350 0.000 0.000 0.000 0.000 0.000	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000
Carbon Tetrachloride 5 0.000 0.000 0.000 0.000 0.00	
Vinyl acetate 10 0.000 0.000 0.000 0.000 0.000	
Bromodichloromethane 0.000 0.000 0.000 0.000	0.000
1,2-Dichloropropane 75 0.000 0.000 0.000 0.000 0.000	
cis-1,3-Dichloropropen 1 0.000 0.000 0.000 0.000 0.000	
Trichloroethene 50 0.000 0.000 0.000 0.000 0.000	
Dibromochloromethane 0.000 0.000	0.000
1,1,2-Trichtoroethane 10 0.000 0.000 0.000 0.000 0.000	
Benzene 1 0.124 0.001 0.014 0.000 0.00	
trans-1,3-Dichloroprop 1 0.000 0.000 0.000 0.000 0.000	
2-Chloroethylvinyl ether 0.000 0.000	0.000
3.000 0.000	0.000
Bromoform 0.5 0.000 0.000 0.000 0.000 0.000	0.000
4-Methyl-2-pentanone 50 0.000 0.000 0.000 0.000 0.000	
2-Hexanone 5 0.000 0.000 0.000 0.000 0.000	
Tetrachloroethene 50 0.000 0.000 0.000 0.000 0.000	
1,1,2,2-Tetrachloroet 1 0.000 0.000 0.000 0.000 0.000	
Toluene 100 0.000 0.000 0.000 0.000 0.000	
Chlorobenzene 10 0.000 0.000 0.000 0.000 0.000	
Ethylbenzene 100 0.000 0.000 0.000 0.000 0.000	
Styrene 50 0.000 0.000 0.000 0.000 0.000	- 1 1
Xylene (total) 100 0.000 0.000 0.000 0.000 0.000	
Hexane 0.006 0.001	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TABLE 2-2

Project Quality

Status as of 06/30/95		<u>Goals</u>							
Yes	1)	No OSHA recordable injuries.							
Attention	2)	100% compliance with all saf	ety rules and procedures.						
Yes	3)	No citations for violations of a appropriate regulations							
Yes	4)	100% attendance (including subcontractors) at daily sameetings.							
Attention	5)	Less than 24-hour response ti	me on health and safety issues.						
Yes	6)	100% sign-in and security cle	arance.						
Yes	7)	No invalidation of reported dat	ta due to QA/QC issues.						
	8)	Spend less than:							
			MH/Month						
Yes	• D	rirect hire	2,000						
Yes	• F	LTG management	600						
Yes/Attention	• T	echnical support (3 people)	500						
Yes	• 1	Maintenance support	80						
Yes	9)	Pump at least 90 gpm; inject a	at least 60 anm						
Yes	10)	Remediate shallow alluvial zor	<u> </u>						
Yes	11)	Hold analytical cost to less the	•						
703	• • • •	only).	arr + ro,ooo por monar (roo r						
Yes	12)	No unscheduled overtime (per	day or per week).						
Yes	13)	No agency contacts which red	quire 3rd party resolution.						
Yes	14)	Documented training of site possignments.	ersonnel for all work						
Yes	15)	Monthly audit of actual perfor	mance versus goals.						

TABLE 2-3
Treated Water Results Summary

		Р	Н	T	ss	T-(oc	0.	LG.	Ben	zene	Chlo	r HC's	Tota	el PCBs	Napt	halene
Collected	Set No.		-9)	5 (PM	55	PPM	15	PPM	150	PPB	500) PPB	0.6	5 PPB	300	PPB
		Daity	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg								
2-Mar-95	M03A0313	7.47		.5		8.5		2.5		2.5		145.		.16		5.	
6-Mar-95	M03A0314	7.49		1.		8.1		2.5		2.5		128.		.16		5.	
9-Mar-95	M03A0315	7.38		1.		8.		2.5		2.5		193.		.16	!	5.	
13-Mar-95	M03A0316	7.64		5.		7.2		2.5		2.5		111.		.16	j	5.	
18-Mar-95	M03A0317	7.55		.5		6.		2.5	i	2.5		150.		.16		5.	
20-Mar-95	M03A0318	7.41		.5		6.6		2.5		2.5		97.		.16		5.	
23-Mar-95	M03A0319	7.45		1.		6.		2.5		2.5		185.		.16		5.	
27-Mar-95	M03A0320	7.83		3.		12.2		2.5	i	6.		325.		.16		5.	
30-Mar-95	M03A0321	7.47	7.5	7.	2.2	11.9	8.3	2.5	2.5	6.	3.3	342.	186	.16	.16	5.	5.
3-Apr-95	M03A0322	7.42	7.5	1.	2.2	11.7	8.6	2.5	2.5	6.	3.7	269.	200	.16	.16	5.	5.
6-Apr-95	M03A0323	7.45	7.5	2.	2.3	12.2	9.1	2.5	2.5	6.	4.1	239.	212	.16	.16	5.	5.
10-Apr-95	M03A0324	7.38	7.5	2.	2.4	11.1	9.4	2.5	2.5	6.	4.4	230.	216	.16	.16	5.	5.
13-Apr-95	M03A0325	7.62	7.5	3.	2.2	12.9	10.1	2.5	2.5	6.	4.8	364.	245	.16	.16	5.	5.
17-Apr-95	M03A0326	7.59	7.5	11.	3.4	12.9	10.8	2.5	2.5	6.	5.2	247.	255	.16	.16	5.	5.
20-Apr-95	M03A0327	7.75	7.6	1.	3.4	12.1	11.4	2.5	2.5	6.	5.6	226.	270	.16	.16	5.	5.
24-Apr-95	M03A0328	7.67	7.6	13.	4.8	13.	12.2	2.5	2.5	6.	6.	269.	279.	.16	.16	5.	5.
27-Apr-95	M03A0329	7.51	7.5	1.	4.6	12.2	12.2	2.5	2.5	2.5	5.6	236.	269	.16	.16	5.	5.
1-May-95	M03A0330	7.63	7.6	1.	3.9	12.1	12.2	2.5	2.5	2.5	5.2	177.	251	.16	.16	5.	5.
4-May-95	M03A0331	7.91	7.6	4.	4.2	12.5	12.3	2.5	2.5	2.5	4.8	222.	246	.16	.16	5.	5.
8-May-95	M03A0332	7.95	7.7	4.	4.4	11.3	12.2	2.5	2.5	2.5	4.4	228.	244	.16	.16	5.	5.
11-May-95	M03A0334	7.97	7.7	4.	4.7	10.9	12.21	2.5	2.5	2.5	4.1	235.	245	.16	.16	5.	5.
15-May-95	M03A0333	7.87	7.8	8.	5.2	13.7	12.3	2.5	2.5	2.5	3.7	209.	228	.16	.16	5.	5.
18-May-95	M03A0335	7.73	7.8	6.	4.7	11.	12.1	2.5	2.5	6.	3.7	374.	242	.16	.16	5.	5.
22-May-95	M03A0336	7.88	7.8	1.	4.7	31.	14.2	2.5	2.5	6.	3.7	274.	247	.16	.16	5.	5.
29-May-95	M03A0337	7.76	7.8	1.	3.3	45.	17.7	2.5	2.5	6.	3.7	227.	242	.16	.16	5.	5.
5~Jun-95	M03A0338	7.53	7.8	.5	3.3	12.1	17.7	2.5	2.5	2.5	3.7	189.	237	.16	.16	5.	5.
12-Jun-95	M03A0339	7.78	7.8	1.	3.3	45.8	21.5	2.5	2.5	2.5	3.7	188.	238	.16	.16	5.	5.
19-Jun-95	M03A0440	7.68	7.8	5.	3.4	7.	20.9	2.5	2.5	2.5	3.7	144.	230	.16	.16	5.	5.
26-Jun-95	M03A0441	7.71	7.77	1.	3.1	9.1	20.6	2.5	2.5	2.5	3.67	128.	219	.16	.16	5.	5.
2-Jul-95	M03A0442	7.47	7.71														

Chlorinated hydrocarbons value is the sum of detected concentrations of 21 volatile chlorinated hydrocarbons on target compound list.

TABLE 2-3 (Continued)
Treated Water Results Summary

	,											·													
			4.6			_	id .		`r		Cu		ъ		<u>An</u>		Hg	_	VI.		ie		Ag		În .
Collected	Set No.		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB
		Daily	R-Avg		R-Avg		R-Avg		R-Avg	Daily	R-Avg		R-Avg		R-Avg		R-Avg		R-Avg		R-Avg		R-Avg		R-Avg
2-Mar-95		23.		133.		.1		2.		1.		.5		15.		.1		8.		1.3		.5		6.	
6-Mar-95		17.		130.		1.		1.		3.		2.2		3.		.1		2.5		.5		.8		8.	
9-Mar-95		24.		111.		.1		.2		.8		.5	- 1	4.		.1		4.		1.3		.2		6.	
13-Mar-95		17.		121.		.1		.2		1.		.5		41.		.1		3.		1.3		.2		5.	
16-Mar-95		23.		114.		.1		.3		3.		.5	j	2.		.1		3.		1.3		.2		11.	
20-Mar-95		18.		112.		.1		.2		3.		.5		2.		.1		2.		1.3		.2		3.	
23-Mar-95	M03A0319	19.		119.		.1		.2		2.		.5		2.		.1		3.		1.3		.2		4.	
27-Mar-95	M03A0320	14.		130.		.1		3.		2.		.5		22.		.1		5.		1.3		.2		40.	
30-Mar-95	M03A0321	19.	19.3	132.	122	.1	.2	2.	1.	2.	2.	.5	.7	25.	12.9	.1	.1	6.	4.1	1.3	1.2	.2	.3	8.	10.1
3-Apr-95	M03A0322	17.	18.7	127.	122	.1	.2	.2	.8	2.	2.1	.5	.7	9.	12.2	.1	.1	1.	3.3	1.3	1.2	.2	.2	15.	11.1
6-Apr-95	M03A0323	23.	19.3	102.	119	.1	.1	.2	.7	1.	1.9	.5	.5	4.	12.3	.1	.1	1.	3.1	1.3	1.3	.2	.2	4.	10.7
10-Apr-95	M03A0324	12.	18.	157.	124	.1	.1	2.	.9	2.	2.	2.	.7	32.	15.4	.1	.1	4.	3.1	1.3	1.3	.2	.2	8.	10.9
13-Apr-95	M03A0325	44.	21.	107.	122	.1	.1	1.	1.	2.	2.1	.5	.7	11.	12.1	.1	.1	6.	3.4	1.3	1.3	. 2	.2	3.	10.7
17-Apr-95	M03A0326	26.	21.3	171.	129	.1	.1	14.	2.5	2.	2.	1.	.7	108.	23.9	.1	.1	14.	4.7	1.3	1.3	.2	.2	17.	11.3
20-Apr-95	M03A0327	24.	22.	129.	130	.7	.2	7.	3.3	9.	2.7	2.	.9	43.	28.4	.1	.1	10.	5.6	1.3	1.3	.2	.2	34.	14.8
24-Apr-95	M03A0328	21.	22	115.	130.	.1	.2	7.	4.	1.	2.6	.5	.9	38.	32.4	.1	.1]	6.	5.9	1.3	1.3	.2	.2	4.	14.8
27-Apr-95	M03A0329	24.	23.3	110.	128	.1	.2	2.	3.9	2.	2.6	.5	.9	12.	31.3	.1	.1	7.	6.1	1.3	1.3	.2	.2	9.	11.3
1-May-95	M03A0330	16.8	23.1	106.	125	1.1	.3	.7	3.8	.7	2.4	.5	.9	6.8	29.3	.1	.1	8.5	6.4	.8	1.2	.5	.2	.2	10.5
4-May-95	M03A0331	21.	23.5	149.	127	1.1	.4	5.9	4.4	1.	2.3	.5	.9	70.4	36.1	.1	.1	7.6	7.1	.8	1.2	.5	.2	16.2	10.6
8-May-95	M03A0332	16.	22.8	126.	130.	1_	.4	1	4.5	1.6	2.4	.5	.9	6.	36.4	.1	11	5.	7.6	1.3	1.2	.2	.2	4.	10.6
11-May-95	M03A0334	17.	23.3	158.	130	.1	.4	3.	4.6	.9	2.2	.5	.7	22.	35.2	.1	.1	6.	7.8	1.3	1.2	.2	.2	5.	10.3
15-May-95	M03A0333	17.	20.3	141.	134	.1	.4	2.	4.7	1.	2.1	.5	.7	21.	36.4	.1	.1	5.	7.7	1.3	1.2	.2	.2	4.	10.4
18-May-95	M03A0335	18.	19.4	122.	128	.1	.4	.2	3.2	.3	1.9	.5	.7	4.	24.8	.1	.1	3.	6.5	1.3	1.2	.2	.2	1.5	8.7
22-May-95	M03A0336	14.	18.3	130.	129	.1	.3	١.	2.5	.5	1.	.5	.5	9.	21.	.1	.1	5.	5.9	1.3	1.2	.2	.2	7.	5.7
29-May-95	M03A0337	16.	17.8	176.	135	.1	.3	2.	2.	.3	.9	.5	.5	27.	19.8	. 1	.1	1.	5.3	2.8	1.3	.2	.2	4.	5.7
5-Jun-95	M03A0338	12.	16.4	191.	144	.1	.3	2.	2.	1.	.8	.5	.5	18.	20.5	.1	.1	4.	5.	1.3	1.3	.2	.2	5.	5.2
12~Jun-95	M03A0339	13.	16.	204.	155	.1	.2	1.	2.	1.	.8	.5	.5	2.5	20.	.1	.1	4.5	4.6	1.3	1.4	.2	.2	3.	5.5
19-Jun-95	M03A0340	14.	15.2	213.	162	.1	.1	1.	1.5	.8	.8	.5	.5	6.	12.8	.1	.1 [5.	4.3	1.3	1.4	.2	.2	1.5	3.9
26-Jun-95	M03A0341	15.	15.1	155.	166	.1	.1	.7	1.4	.7	.7	4.	.9	2.	12.4	.1	.1	4.	4.2	1.3	1.4	.2	.2	6.	4.1

Metals values in PPB.

French Ltd. Project

FLTG, Incorporated

2.2 Problem Areas and Recommended Solutions

Pr	.0	bl	е	m

Solution

Maintain high level of safety awareness.

Daily raffle ticket program. Daily safety meetings. Safety meeting participation. Training. Regular HAZOP's.

On-the-Job safety attention.

Contact all employees at least twice per day on safety issues. Review job details as work proceeds. Stop and challenge approach.

Hazard detection and response.

Safety inspections. HAZOP's on all jobs. Constant awareness.

Low flow in some INT pumping and injection wells.

Vacuum enhanced pumping. Increase injection pressure in some areas. Decrease back-pressure on pumping wells. Add wells in target areas.

Low flushing rate in INT zone just SW of INT-11 wall.

Install two pumping wells and two injection wells; vacuum enhance the new pumping wells; consider specific well conversions.

Low flushing rate on SW corner just SW of floodwall.

Install six new pumping wells; convert two old pumping wells to injection wells; convert one monitoring well to an injection well.

Affected soil in excavation at wetlands project.

Secure the area; sample and analyze; reroute the excavation; review with City of Baytown officials; develop response action plan; remove and dispose of excavated, affected soil.

MONTHLY PROGRESS REPORT Summary

French Ltd. Project

FLTG, Incorporated

2.3 Problems Resolved

Problem

Solution

Wetlands civil work in wet weather.

Completed civil work.

Circulation in INT west of landfill.

Vacuum enhanced pumping well.

2.4 Deliverables Submitted

May, 1995 monthly report

2.5 Upcoming/Ongoing Events and Activities

Daily safety meetings and inspections.

Daily safety awareness program.

Emphasis on multiple work assignments.

Emphasis on hazard identification and response.

Attention to safety details.

Operate S1 and INT wells for expedited in-situ bioremediation.

Increase nutrient and oxygen circulation in specific INT areas.

Evaluate focused remediation in S1 and INT target areas.

Daily well pump checks and maintenance.

Aquifer compliance sampling in select areas and zones.

Run several natural attenuation modeling cases.

Injection of Cell D water.

Evaluate vegetation in Lagoon area.

Evaluate lagoon surface water source options.

Operate Data Base Management System.

Total Quality process.

Minimize carbon usage in Water Treatment Plant.

Develop lagoon closure plan.

Submit MCC-1 area remediation report.

Start brackish marsh area re-vegetation.

2.6 Key Staffing Changes

Reduced support staff by one person.

2.7 Percent Complete

Research & Development	- 98%
Facilities	- 100%
Slough	- 100%
Subsoil Investigation	-100%
Floodwall	-100%
Lagoon Remediation	-100%
Groundwater	- 84%
Lagoon Dewatering/Fixation	- 100%
Water Treatment	- 81%
Wetlands	- 95%
Demobilization	- 67%
Monitoring	- 64%

2.8 Schedule

All deliverables are on schedule.

Complete wetlands re-vegetation by September 1, 1995.

Complete active aquifer remediation by January 1, 1996.

2.9 Operations and Monitoring Data

The operations and monitoring data are submitted as parts of Sections 3.0, 4.0, 5.0, and 6.0 of this report, and the supporting data are stored in secure storage at the French project office.

2.10 Credits Accrued/Applied

Status of Credits

	Accrued this period	Accrued to date	Applied this period	Applied to date	Running total
December 1990	34	34	0	0	34
December 1991	0	100	0	0	100
December 1992	0	101	0	2	99
December 1993	0	104	0	4	100
January 1994	0	104	0	4	100
February 1994	0	104	0	4	100
March 1994	0	104	0	4	100
April 1994	0	104	0	4	100
May 1994	0	104	0	4	100
June 1994	0	104	0	4	100
July 1994	5	109	0	4	105
August 1994	0	109	0	4	105
September 1994	0	109	0	4	105
October 1994	0	109	0	4	105
November 1994	0	109	0	4	105
December 1994	0	109	0	4	105
January 1995	0	109	0	4	105
February 1995	0	109	0	4	105
March 1995	0	109	0	4	105
April 1995	0	109	0	4	105
May 1995	0	109	0	4	105
June 1995	0	109	0	4	105

2.11 Community Relations

Maintained 24-hour, call-in Hot Line.

Conducted four site tours for interested parties.

Contacted nearby local residents with update on site activities.

Contacted two Riverdale residents with well sampling results.

Supported Barrett Chamber of Commerce development project.

Supported Crosby Fair and Rodeo.

3.0 LAGOON

3.1 Summary of Activities

Evaluating test plots of various plants in Cell E.

Injected about 177,800 gallons of "clean" Cell D water in Cell E subsurface.

Operated aerator in Cell D to expedite biomass degradation.

Evaluating various options for gradient control inside the lagoon.

Evaluating several surface water source options for the area inside the migration wall.

Continued dismantling and disposal of scrap piping.

3.2 Problems and Response Action

<u>Problem</u>	Recommended Solution
Ground cover growth slow in Cell E.	Water frequently. Evaluate different grass blends and soil nutrients.
Poor tree growth in Cell E.	Evaluate different types of trees. Design an irrigation system.
Surface water source.	Develop list of options; evaluate realistic options.

3.3 Problems Resolved

None.

3.4 Deliverables Submitted

None.

3.5 Upcoming Events and Activities

Maintain pH, DO, OUR, and nutrient levels in Cell D.

Operate aerator/mixer in Cell D as required.

Inject Cell D water in Cell E subsurface.

Water Cell E and Cell F as required.

Maintain vegetation in Cell E.

Dismantle and dispose of surplus pipe.

Evaluate surface water source options.

4.0 GROUNDWATER AND SUBSOIL REMEDIATION

4.1 Summary of Activities

4.1.1 Operation of Production and Injection Well Systems

Operation of the production and injection wells systems during June 1995 is summarized in Table 4-1. Flows from the production well system are summarized in Table 4-2 and Figure 4-1. Flows into the injection well system are summarized in Table 4-3 and Figure 4-2. Individual well flows are summarized in Table 4-4.

4.1.2 Operational Monitoring

Operational monitoring associated with the groundwater and subsoil remediation system during June, 1995, is summarized in Table 4-5. Results of the annual GW sampling have been issued to the EPA and placed in the appropriate repositories.

4.1.3 Data Management and Evaluation

Operational monitoring data from the groundwater and subsoil remediation system for this reporting period were entered into FLTG's database. Tables and figures for this section of the Monthly Progress Report were generated from this database.

4.2 Problems and Response Actions

Groundwater production and injection rates were at or above the targets of both production and injection wells. The new goal for production well rates is 90 gpm. See Table 4-1. Nutrient and dissolved oxygen concentrations in injection water were at or close to target levels. No specific response action is planned.

Injection flows into the S1 wells and INT south of Gulf Pump were estimated for the month in June. Parts for the meters were misplaced in delivery and then calibrations took until the 26th before these flows were confirmed.

Table 4-1

Groundwater System Operation - June 1995 Reporting Period: June 1-30 (30 days)

Production System

No. of production wells: 113 (S1 unit, 53; INT unit, 60)

No. of operational wells by end of month: 58 (S1 unit, 14; INT unit, 44)

Changes in system since last month: Shut off S1-20 and S1-21

No. of wells off line having reached criteria: 39

16 wells off inside lagoon

Groundwater produced: 4.1 M gal; 260.6 M gal since startup based on main meter

Total production rate: avg. 94 gpm (target 90 gpm); range 84-117 gpm

S1 production rate: avg. 42.7 gpm; avg. 3.1 gpm per metered well

INT production rate: avg. 42.0 gpm; avg. 1.0 gpm per metered well

Total flow rate apportioned between S1 and INT units based on individual well meter readings; average flows based on 30 days operation

TOC (non-volatile) concentration avg. 35 ppm; range 25-63 ppm

TOC mass removed: 1,166 lb. (370,104 lb. since startup); 39 lb./day

Injection System

No. of injection wells: 67 (S1 unit, 21 [9 on line]; INT unit, 46 [30 on line])

Rainfall during period: 4.94 inches

Changes in system since last month: Shut off S1-66, -67, -68, & -59; INT-71 shut off for leaking seal

Groundwater injected: 4.0 M gal (160.2 M gal since startup) based on main meters

S1 unit injected: 1.3 M gal (87.1 M gal since startup) INT unit injected: 2.7 M gal (73.1 M gal since startup)

Total injection rate: avg. 98.7 gpm (target 100 gpm); range 92-151 gpm

S1 injection rate: avg. 43.0 gpm; avg. 4.8 gpm per well INT injection rate: avg. 55.7 gpm; avg. 1.9 gpm per well

Total flow rate apportioned between S1 and INT units based on individual well meter readings; average flows based on 30 days operation

Oxygen added to injection water: 10,010 lb.; 333.7 lb./day used (input efficiency = 17%) Avg. DO in injection water: S1, 48.3 ppm; INT, 50.9 ppm (target 40 ppm) \Rightarrow 55.5 lb./day injected

Volume of 9.1% w/w KNO $_3$ nutrient solution added to INT unit, and 2 S1-North wells: 9.413 gal

Nutrient flow rate: 313.8 gpd, 0.34% of INT + S1-North inflow rate (target 0.38%) Calculated injection water NO₃ concentration: 85.8 mg/L-N (target 50 mg/L-N)

Note that average monthly flow rates at individual wells (calculated from weekly individual well flow meter readings) are not used directly to determine S1 and INT unit inflows and outflows, but are used to apportion total production and injection flows (calculated from daily main production and injection meter readings) between S1 and INT units. Average flows are based on the 30 day reporting period.

Table 4-2

Daily Groundwater Production and TOC Removal

June 1995

Date	Project Day	T-101 Outflow Rate	T-101 Outflow	T-101 Influent	T-101 Influent
	Cay	(FQ-101A)	Rate	Ave. TOC	
]		(gpd)	(gpm)		TOC Loading
1-Jun	1240	135,300	(gpiii) 94	(mg/L)	(kg/day)
2-Jun	1240	151,700		26	13
3-Jun	1242	'	105	30	17
4-Jun	1242	168,700 156,800	117 109	30	19
5-Jun	1243	151,400	109	27	. 16 . 19
6-Jun	1244	157,200	109	34	24
7-Jun	1245	128,500	89	41	23
8-Jun	1247	121,000	84	48	1
9-Jun	1248	123,000	85	38	17 16
10-Jun	1249	130,000	90	34	1 1
10-Jun	1249	143,300	100	34	17 21
12-Jun	1250	131,500	91	38	10
13-Jun	1252	123,900	91 86	20 33	15
14-Jun	1253	143,800	100		18
15-Jun	1254	148,500	100	33 30	17
16-Jun	1255	134,600	93	30	16
17-Jun	1256	109,700	93 76	32	13
18-Jun	1257	135,400	94	32	16
19-Jun	1258	137,700	96	25	13
20-Jun	1259	131,800	90 92	38	19
21-Jun	1260	130,600	91	63	31
22-Jun	1261	132,300	92	40	20
23-Jun	1262	131,600	91	33	16
24-Jun	1263	132,200	92	33	17
25-Jun	1264	131,600	91	34	17
26-Jun	1265	126,800	88	34	16
27-Jun	1266	121,900	85	42	19
28-Jun	1267	125,600	87	35	17
29-Jun	1268	142,500	99	32	17
30-Jun	1269	127,500	89	32 35	17
Month Average	ويستحديها كالمام	135,547	94	35	18
Month Total		4,066,400	34	1166 lb	529
o.i.i. rotar		4,000,400		עופטוו	328

Table 4-3

Daily Injection Flows

June 1995

Date	Project Day	INT-90. S1 No Injection FQ90	/100 orth Wells	(not INT Injectio	North -90/100) n Wells -Q-906	S1 So Injection Meter F0	Wells	Tota Injecti Rate	on	Oxygen	Nutrients
		(gpd)	(gpm)	(gpd)	(gpm)	(gpd)	(gpm)	(gpd)	(gpm)	lbs	Gallons
1-Jun	1240	38,500	27	47,100	33	45,000	31	130,600	91	255	352
2-Jun	1241	43,500	30	48,000	33	45,000	31	136,500	95	320	274
3-Jun	1242	43,500	30	47,300	33	45,000	31	135,800	94	315	304
4-Jun	1243	43,500	30	48,000	33	45,000	31	136,500	95	300	312
5-Jun	1244	43,500	30	47,500	33	45,000	31	136,000	94	410	281
6-Jun	1245	43,500	30	46,900	33	45,000	31	135,400	94	290	308
7-Jun	1246	43,500	30	47,700	33	45,000	31	136,200	95	300	293
8-Jun	1247	43,500	30	47,300	33	45,000	31	135,800	94	300	304
9-Jun	1248	43,500	30	46,500	32	45,000	31	135,000	94	260	5 28
10-Jun	1249	43,500	30	47,000	33	45,000	31	135,500	94	280	318
11-Jun	1250	43,500	30	47,500	33	45,000	31	136,000	94	455	304
12-Jun	1251	43,500	30	46,700	32	45,000	31	135,200	94	300	323
13-Jun	1252	43,500	30	46,800	33	45,000	31	135,300	94	395	323
14-Jun	1253	43,500	30	47,100	33	45,000	31	135,600	94	400	323
15-Jun	1254	43,500	30	42,200	29	45,000	31	130,700	91	300	296
16-Jun	1255	43,500	30	50,900	35	45,000	31	139,400	97	380	289
17-Jun	1256	43,500	30	47,200	33	45,000	31	135,700	94	280	270
18-Jun	1257	43,500	30	46,900	33	45,000	31	135,400	94	280	300
19-Jun	1258	43,500	30	47,700	33	45,000	31	136,200	95	340	312
20-Jun	1259	43,500	30	47,000	33	45,000	31	135,500	94	400	319
21-Jun	1260	43,500	30	46,700	32	45,000	31	135,200	94	300	331
22-Jun	1261	43,500	30	46,900	33	45,000	31	135,400	94	400	315
23-Jun	1262	43,500	30	47,800	33	45,000	31	136,300	95	300	308
24-Jun	1263	43,500	30	48,300	34	45,000	31	136,800	95	300	308
25-Jun	1264	43,500	30	47,900	33	45,000	31	136,400	95	340	315
26-Jun	1265	43,500	30	48,200	33	45,000	31	136,700	95	290	319
27-Jun	1266	43,500	30	45,300	31	43,200	30	132,000	92	420	258
28-Jun	1267	43,500	30	43,000	30	41,500	29	128,000	89	300	304
29-Jun	1268	43,500	30	42,600	30	38,000	26	124,100	86	280	334
30-Jun	1269	43,500	30	42,800	_30	43,500	30	129,800	90	520	289
Month A	verage	43,333	30	46,760	32	44,540	31	134,633	93	334	314
Month To	otal	1,300,000		1,402,800		1,336,200		4,039,000		10,010	9,413

Table 4-4

Average Production and Injection Flow Rates - June 1995

S1 Production Wells (14)

Flow rates are everages for the period June 1 - June 30 (30 days)

INT Injection Wells (30)

31 1100	MOTION 446IB (14) Simjection	
Well ID	gpm	Well ID	
S1-1	OFF	S1-18	_
S1-2	OFF	S1-31	
S1-3	OFF	51-49	
S1-4	OFF	S1-50	
S1-6	OFF	S1-51	
S1-8	OFF	S1-62	
S1-7 S1-8	OFF OFF	S1-53	
S1-8	OFF	\$1-54	
\$1-10	OFF	\$1-55 \$1-56	
S1-10	OFF	S1-67	
\$1-12	OFF	51-58	
S1-13	OFF	S1-59	
\$1-14	OFF	\$1-65	-
S1-16	OFF	S1-66	
S1-16	OFF	\$1-67	
S1-17	1.6	\$1-68	
S1-18	3.1	51-69	
S1-20	OFF	\$1-70	
S1-21	OFF	\$1-101	
S1-22	1.3	\$1-133	
S1-23	OFF		
S1-24	OFF	Total	
S1-25	1.1		_
S1-26	3.8		
S1-27	1.3	Average	
S1-28 S1-29	4.5	L	_
S1-29	1.9 5.1	/4/- 12- C1 40 C	-
S1-30	OFF	Welle S1-18, S S1-133 receive	
S1-32	4.6	and nutrient am	
S1-33	OFF	injection water	•
S1-34	OFF	Subtotal	-
S1-35	OFF		-
\$1-36	OFF	All other S1 we	i
S1-37	OFF	oxygeneted inje	
S1-38	OFF	water only	
S1-39	OFF	\ <u></u> -	
S1-40	OFF		
51-41	OFF		
S1-42	OFF	,	
S1-43 S1-44	OFF		
S1-44 S1-45	OFF		
S1-48	OFF		
S1-46 S1-47	OFF		
S1-48	OFF		
\$1-60	OFF		
S1-81	1.8		
S1-62	7.7		
S1-63	3.6		
\$1-64	1.3		
Total	42.7		
Average*	3.1	Notes Off⁵ - well inoperative NM - well running but	
* of mete	red wells	PP - well in pulse pur	

	evereges for t on Welle (9)		- June 30 (30 days duction Wells (44)
Weii ID	gpm	Well	ID gpm
S1-18	2.3	INT-	1 0.8
S1-31	4.6	INT-	
\$1-49	OFF	INT-	
S1-50	OF F	INT-	. —
S1-51	OFF	INT-	
S1-62	OFF	INT-	
S1-53	OFF	INT-	1
S1-54	OFF	INT-	- 1
S1-55	3.8	INT-	
S1-56	OFF	INT-1	
S1-67	OFF	INT-	
S1-58	OFF	INT-1	
S1-59	0.4	INT-	
	10.4	INT-	
S1-66	OFF	INT-	1
51-67	OFF	INT-1	
S1-68 S1-69	OFF	INT-1	
	5.0	INT-	1
S1-70 S1-101	4.8	INT-	
S1-101	5.4	INT-	
31-133	6.3	INT-	
Total	43.0	INT-	_
TOURI	43.0	INT-	
A	4.8	INT-	
Average	4.8	INT-	
		INT-	
elle S1-18,	61.21	INT-	
		INT-2	
l-133 receiv Id nutrient s		INT-:	
ection wate	menoed	INT-	
Subtotal	13.2	INT-	
0	10.2	INT	
other S1 w	raile tacana	INT	
ygenated in		INT-6	
star only	,000,001	INT-E	
		INT-E	
		INT-	
		INT-1	
		INT-2	
		INT-2	
		INT-2	1
		INT-2	
		INT-2	09 0.2
		INT-2	10 1.5
		INT-2	
		INT-2	
		INT-2	L.
		INT-2	
		INT-2	
		INT-2	16 OFF
ell inoperativ	/B	INT-2	
ill running b	ut not metered	INT-2	
	mping mode	INT-2	
,		INT-2	

INT Injection Welle (30)				
Well ID	gpm			
INT-63	2.3			
INT-64	2.6			
INT-71	OFF			
INT-72	0.8			
INT-73	2.0			
INT-74	2.2			
INT-76	0.3			
INT-76	4.0			
INT-77	3.3			
INT-78 INT-79	3.9			
INT-80	0.7			
INT-80	1.2 4.2			
INT-82	0.2			
INT-83	1.1			
INT-84	2.7			
INT-85	OFF			
INT-86	OFF			
INT-87	OFF			
INT-88	OFF			
INT-89	OFF			
INT-90 _	OFF			
INT-91	OFF			
INT-92	OFF			
INT-93	OFF			
INT-94	OFF			
INT-95	OFF			
INT-96	OFF			
INT-97	1.0			
INT-98	2.2			
INT-89	OFF			
INT-100	OFF			
INT-201	OFF			
INT-202	1.0			
INT-203	0.4			
INT-204	1.2			
INT-218 INT-219	1.2 1.6			
INT-219	1.8			
INT-220	1.0			
INT-222	3.1			
INT-222	1.6			
INT-224	3.1			
INT-225	4.5			
INT-226	0.5			
INT-227	0.5			
Total	55,7			
Average	1.9			
All INT injection wells				

nutrient-amended injection water

ping mode

Note: total and average flow rates for S1 and INT units are corrected (per main flow meter readings) for use in Table 4-1.

INT-230 Total

42.0

[•] of metered wells

Table 4-5
Operational Monitoring - June 1995

Activity	Frequency	Purpose
Check production and injection wells for pump, meter, and level control operation, injection pressure, and gas buildup.	Daily	Identify and respond to individual well problems; maintain operating efficiency.
Flow meter readings	Weekly	Identify and respond to individual well problems; maintain operating efficiency.
Read groundwater treatment plant in- flow and outflow meters; nutrient injec- tion flow meters; oxygen flows, pressure and temperature; and injection header back pressure.	2x daily	Identify and respond to treatment plant problems; control nutrient and injection flow rates.
Measure T-101 influent TOC.	2x daily	Track TOC removal.
Measure dissolved oxygen at 6 representative S1 and INT injection wells.	Weekly	Control oxygen injection.
Conduct water levels DO and TOC on 22 monitoring wells.	Weekly	Define progress of new INT wells and shut-off areas. Track DO breakthru.
Conduct water levels on shut-off wells.	Monthly	Track level recovery in shut-off wells.
Conduct TOC and DO on select production wells.	Weekly	Track TOC and DO levels in critical areas.

Figure 4-1

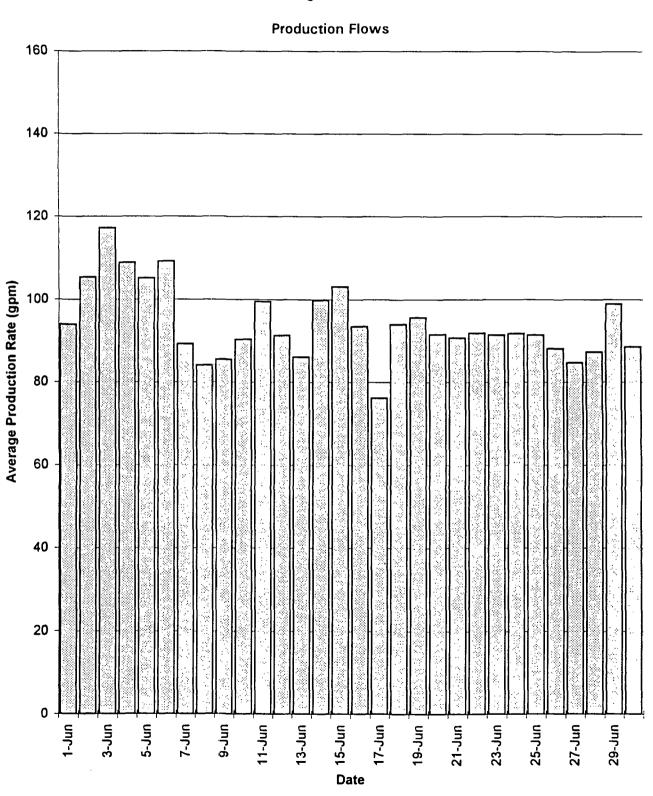
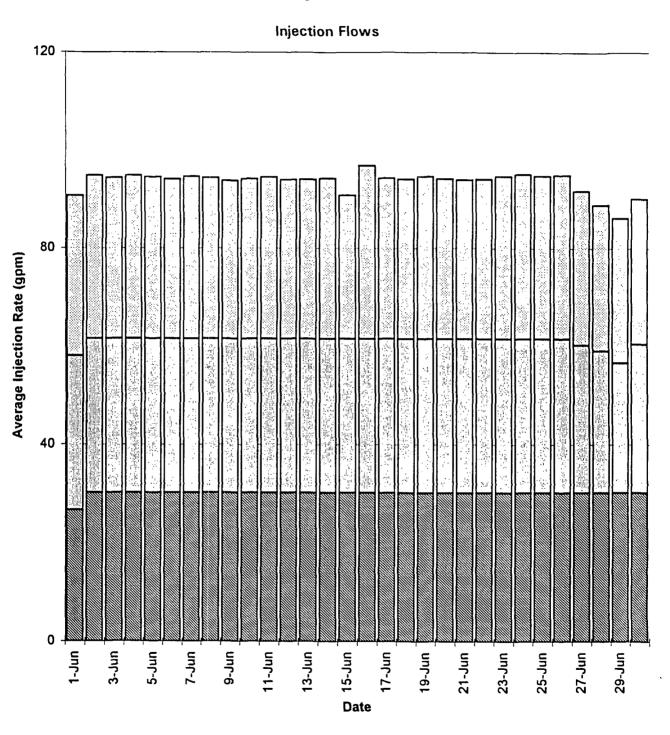
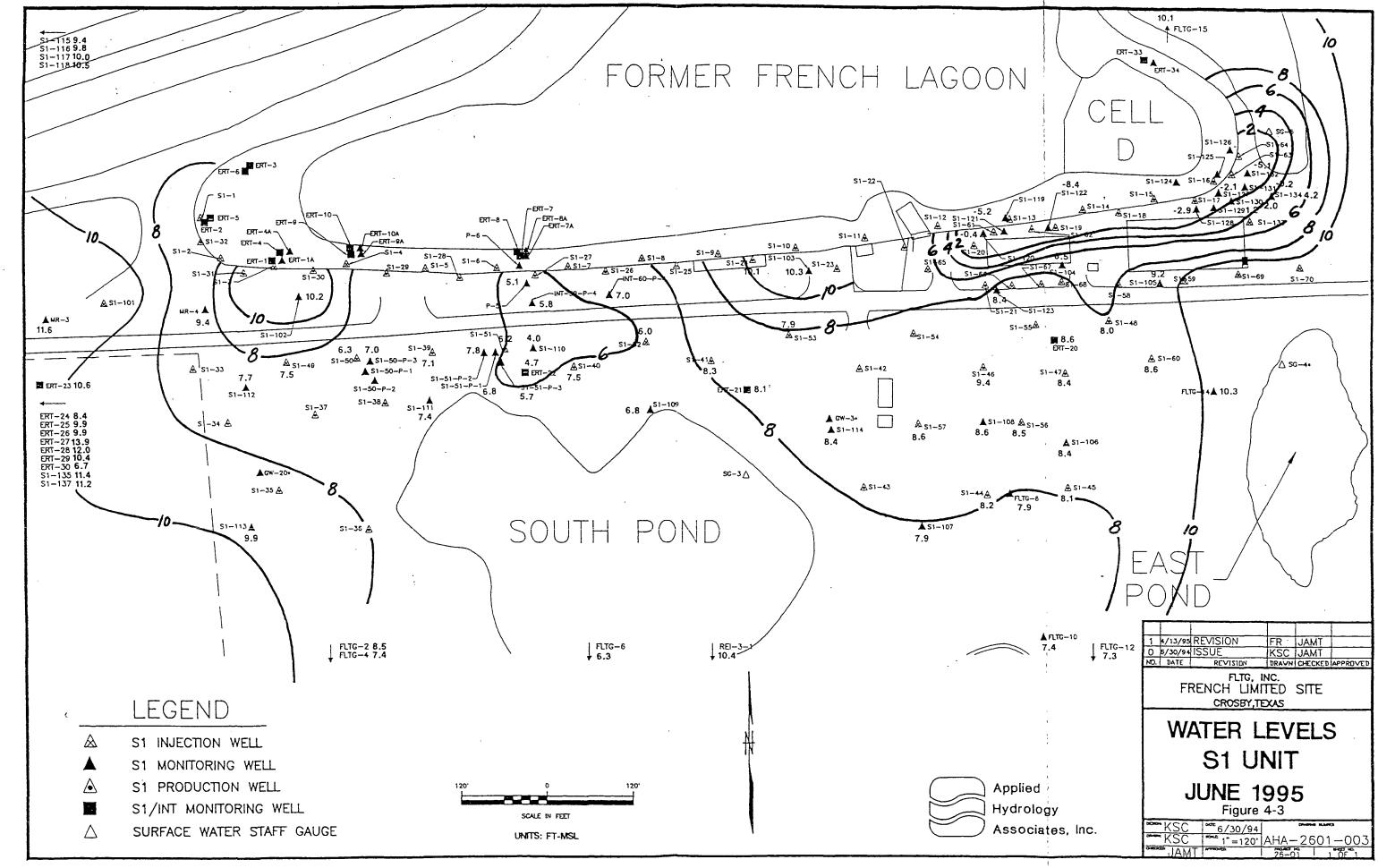



Figure 4-2

NT South ☐S1 South ☐INT North

ex INT-90/100


INT 90/100

4-8

S1 North

SUBSOIL.06

June, 1995

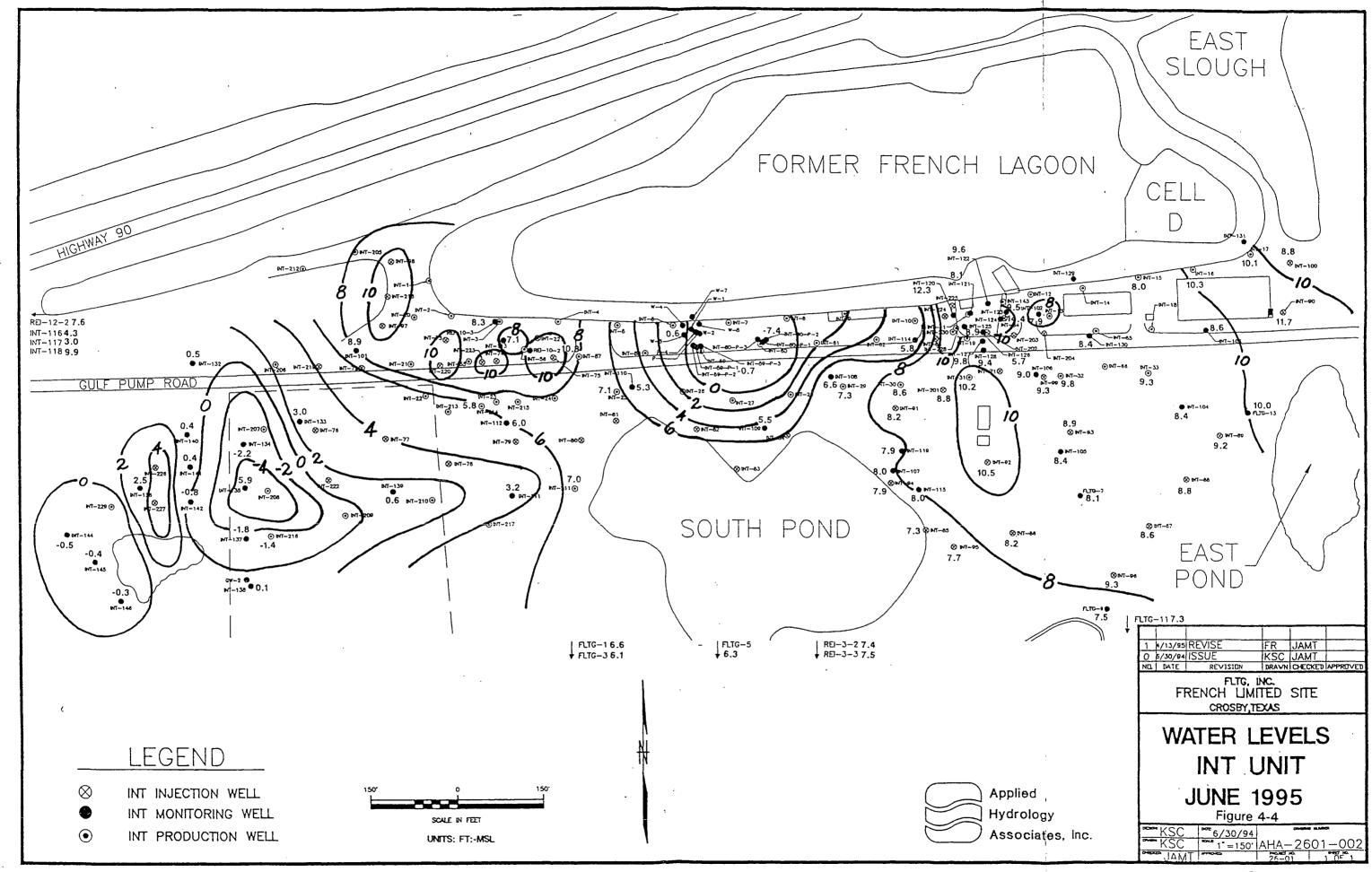


Table 4-6
Schedule for Shut-Down of INT and S1
Pumping and Injection Wells

Date	Well #	Type (Prod. or Inj.)	Meter Reads	Flow Rate (gpm)	Operator tagged out
01-94	S1-35	Production			MC
	S1-43	Production			MC
05-94	S1-33	Production			MC
06-94	S1-34	Production			MC
06-94	S1-36	Production			MC
	S1-37	Production			MC
	S1-38	Production			MC
06-94	S1-42	Production			MC
	S1-23	Production			MC
	S1-5	Production			MC
12-94	S1-1	Production			WW
	S1-2	Production			ww
	S1-3	Production	<u></u>		ww
	S1-4	Production			ww
	S1-6	Production			ww
12-94	S1-7	Production		1	ww
	S1-8	Production			WW
	S1-9	Production			WW
	S1-10	Production			WW
12-94	S1-11	Production			ww
	S1-12	Production			WW
	S1-13	Production			ww
	S1-14	Production			WW
12-94	S1-15	Production			WW
	S1-16	Production			WW
	S1-58	Injection	Leaking seal		ww
	January, 199	5 converted S1-1 thru S1-9 to	injection for recharge war	ter table for vegetation.	
02-18-95	S1-49	Injection		1.30	
	S1-39	Production		8.50	
	S1-60	Production		4.50	
	S1-48	Production		2.50	
	INT-17	Production		0.12	

Table 4-6 (Continued)

Schedule for Shut-Down of INT and S1 Pumping and Injection Wells

Date	Well#	Type (Prod. or Inj.)	Meter Reads	Flow Rate (gpm)	Operator tagged out
02-19-95	INT-85	Injection		0.33	
	INT-86	Injection		1.00	
	INT-16	Production		0.16	
	S1-50	Injection	-	1.85	
	S1-19	Production		3.40	back on 2/22/95
02-20-95	S1-56	Injection		3.85	
	S1-57	Injection		2.50	
	INT-87	Injection		0.51	
<u> </u>	INT-88	Injection		1.33	
	INT-89	Injection		1.10	
02-21-95	S1-46	Production		20.0	· · · · · · · · · · · · · · · · · · ·
	INT-15	Production		0.85	
	INT-90	Injection		2.75	
	INT-100	Injection		0.10	
02-22-95	INT-99	Injection		2.75	
	INT-91	Injection		1.69	
	INT-92	Injection		3.00	
	INT-93	Injection		1.00	
02-23-95	INT-94	Injection		0.08	
	INT-95	Injection		1.30	
	INT-96	Injection		1.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	S1-44	Production		9.00	
02-24-95	INT-201	Injection		1.21	
	S1-51	Injection		0.70	
	INT-33	Production		0.18	
	S1-40	Production		10.0	·
02-25-95	S1-52	Injection		1.12	
	S1-53	Injection		1.75	
	INT-32	Production		1.00	
1	INT-31	Production		1.55	
02-26-95	S1-41	Production		9.00	
	S1-45	Production		3.00	
	INT-30	Production		1.63	
	INT-29	Production		3.00	

Table 4-6 (Continued)

Schedule for Shut-Down of INT and S1 Pumping and Injection Wells

Date	Well#	Type (Prod. or Inj.)	Meter Reads	Flow Rate (gpm)	Operator tagged out
02-27-95	INT-25	Production		0.40	
	INT-214	Production			
	INT-211	Production		1.90	
	INT-216	Production		0.70	
02-28-95	S1-24	Production		7.00	
	S1-31	Production		3.50	
	S1-47	Production		2.01	
	S1-18	Production		1,67	
4-13-95	INT-14	Production		.15	
	INT-18	Production		.44	
	INT-65	Production		.80	
	INT-66	Production		1.70	
6-5-95	S1-20	Production		3.81	
	S1-21	Production		11.02	
	S1-66	Injection		5.6	
	S1-67	Injection		8.0	
6-12-95	S1-59	Injection		5.7	
	S1-68	Injection		3.4	
<u></u>					

4.3 Pending Issues

4.3.1 S1 Unit Pulse Pumping

No wells are on a pulse pump program this period. Schedule of well shut-off is included as Table 4-6.

4.4 Operational Refinements

Added INT-229 to vacuum enhancement program. Shut off S1-20 and -21 production wells, S1-59, -66, -67, and -68 injection wells. These wells have met criteria.

4.5 Data Summary and Discussion

4.5.1 Groundwater Production and Injection

Groundwater production target rates were adjusted to 90 gpm to compensate for the expanded shut-off. Injection rate target remains the same.

4.5.2 Groundwater Levels and Flow Directions

The current extent of contaminated groundwater is contained within the S1 and INT extraction system capture zones.

Water level contour maps are presented as Figure 4-3 (INT) and Figure 4-4 (S1).

4.5.3 TOC in shallow groundwater

TOC analyses on production wells were completed the first week in June. The analyses are in Table 4-7 and Table 4-8. The overall average TOC level continues to drop.

4.5.4 In-Situ Bioremediation

The emphasis continues to be to maximize delivery of oxygen and nutrients to the INT system. Dissolved oxygen analysis was conducted on the monitoring wells during the third well volume pumped.

4.6 Schedule

Drilling of six new INT wells: four at INT-20, -2, and -3 area and two in landfill INT-76 and -77 area. Convert INT-2 and -3 production wells and INT-113 monitoring well to injection wells. Convert S1-20 to injection well.

Table 4-7

, 										
		н		OF TOO		NTRATION WELLS	ONS			
Well	Baseline	Sep	Nov	Dec	Jan	Feb	Mar	Apr	May	June
ID	Nov-Dec 91	1994	1994	1994	1995	1995	1995	1995	1995	1995
L	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
\$1-1	290	1,133	1,215	NS	1,592	NS	NS	NS	NS	NS
\$1-2	190	1,251	NS	NS	1,044	NS	NS	NS	NS	NS
\$1-3	370	566	750	NS	624	NS	NS	NS	NS	NS
\$1-4	47 51	620	576	NS	582	NS	NS	NS	NS	NS
S1-5 S1-6	51	NS 928	NS NS	NS NS	504 774	NS NS	NS NS	NS NS	NS	NS
\$1-7	200	660	NS	NS	708	NS	NS	NS NS	NS NS	NS
S1-8	64	935	909	NS	708	NS	NS	NS	NS	NS NS
S1-9	77	567	NS	NS	1,520	NS	NS	NS	NS	NS
S1-10	46	567	2,001	NS	2,205	1,860	448	1,680	NS	NS
S1-11	120	2,510	1,825	NS	2,121	2,320	40	1,608	NS	NS
\$1-12	140	2,355	1,086	NS	1,850	1,960	344	105	NS	NS
\$1-13	520	1,077	960	NS	678	820	312	0	NS	NS
\$1-14	590	1,440	1,000	NS	1,392	1,430	592	1,340	NS	NS
\$1-15 \$1-16	5,300 8,900	2,583	1,450	NS	2,597	2,530	1,488	3,059	NS	NS
\$1-10	6,800	NS 141	1,744 92	NS	1,050 73	330	136	288	NS	NS
S1-18	2,200	49	45	NS NS	24	76 37	72 72	46 23	29	30
S1-19	20	39	22	NS	14	16	32	18	NS 13	NS NS
\$1-20	120	60	43	NS	21	16	17	6	6	NS NS
S1-21	65	42	11	NS	6	3	11	15	BDL	NS
S1-22	290	64	31	NS	30	55	NS	199	135	196
\$1-23	350	29	20	NS	13	12	NS	7	NS	NS
\$1-24	250	42	17	NS	13	10	NS	19	NS	NS
S1-25	550	33	23	NS	13	13	NS	10	27	18
S1-26	540	49	16	NS	14	11	NS	10	25	16
S1-27	220	88	128	NS	25	31	NS	24	34	31
\$1-28 \$1-29	370 670	21 33	18 20	NS	14	16	NS	10	31	22
S1-29	370	33 86	28	NS NS	16 20	11 22	NS NS	23 15	31 NS	18
\$1-31	14	29	25	NS	12	11	NS	NS	NS	17 NS
\$1-32	18	73	40	NS	35	37	41	73	19	18
S1-33	10	567	NS	NS	NS	NS	NS	NS	NS	NS
S1-34	11	18	NS	NS	NS	NS	NS	NS	NS	NS
S1-35	24	37	NS	NS	28	NS	NS	NS	NS	NS
\$1-36	200	39	NS	NS	NS	NS	NS	NS	NS .	NS
S1-37	13	36	NS	NS	NS	NS	NS	NS	NS	NS
S1-38 S1-39	59 200	22 17	NS	NS	NS	NS	NS	NS	NS	NS
\$1-39 \$1-40	290 150	17	NS 18	NS NS	10 18	12	NS	NS	NS	NS
S1-41	170	16	NS	NS NS	10	21 16	NS NS	NS NS	NS NS	NS NS
S1-42	83	22	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS
S1-43	4	14	NS	NS	NS	NS	NS	NS	NS NS	NS NS
S1-44	280	28	NS	NS	9	19	NS	NS	NS	NS
\$1-45	4,400	24	NS	NS	10	32	NS	NS	NS	NS
S1-46	480	24	10	NS	4	11	NS	NS	NS	NS
S1-47	1,200	31	NS	NS	24	28	NS	NS	NS	NS
S1-48	1,200	22	NS	NS	15	22	NS	NS	NS	NS
S1-60	48	17	NS	NS	8	14	NS	NS	NS	NS
S1-61	NS NS	366	152	NS	78	116	108	63	23	16
S1-62 S1-63	NS NS	27 241	18 150	NS NS	20 155	14	11	3	4	7
S1-63	NS NS	66 68	55	NS NS	155 44	120 50	70 43	47 61	27 52	24 29
	Sampled			143		30	43	91	32	29

NS = Not Sampled

Table 4-8

HISTORY OF TOC CONCENTRATIONS AT INT PRODUCTION WELLS													
Well	Baseline	Sep	Nov	Dec	Jan	Feb	Mar	Apr	Way	June			
ίD	Nor-Dec 91	1994	1994	1994	1995	1995	1995	1995	1995	1995			
INT-1	(ppm) 3,600	(ppm) 320	(ppm) 253	(ppm)	(ppm)	(ppm) 270	(ppm) 273	(ppm) 369	(ppm) 172	(ppm)			
INT-2	1,800	281	214	NS	91	492	563	253	692	741			
INT-3	5,200	932	1,550	NS	1,016	940	624	561	452	270			
INT-4	610	430	NS	NS I	198	180	209	229	149	128			
INT-5	960	103	90	NS	76	70	45	87	68	72			
INT-6	280 100	195 101	100 38	NS NS	76	72	46	65	68	65			
INT-8	75	64	43	NS NS	120 47	123 45	NS NS	116 47	102	115			
INT-9	800	70	NS	NS	68	58	NS	72	129	43 154			
INT-10	1,900	82	135	NS	45	45	20	55	56	62			
INT-11	590	113	31	NS	31	27	29	50.4	43	23			
INT-12	3,300	74	23	NS	32	16	31	72	65	145			
INT-13 INT-14	590 24	50	23 53	NS	34	12	NS	11	9	11			
INT-14	19	119 47	53 18	NS NS	39 17	50 16	54 NS	O NS	NS NC	NS			
INT-16	2,000	68	9	NS NS	6	11	NS	NS NS	NS NS	NS NS			
INT-17	7	19	14	NS	š	14	NS	NS	NS NS	NS			
INT-18	4	57	29	NS	24	20	31	35	NS	NS			
INT-19	1,400	38	39	NS	56	49	NS	38	714	36			
INT-20	3,500	1,182	NS	NS	1,480	1,476	1,425	998	1480	1080			
INT-21 INT-22	29 8	190 95	NS	NS NS	204	132	540	188	200	240			
INT-22	16	112	NS NS	NS	117 35	135 40	199 30	160	135	110			
INT-24	240	84	65	NS	58	56	NS NS	NS 47	29 48	48 42			
INT-25	36	29	NS	NS	20	18	NS	NS	NS	NS			
INT-26	120	122	123	NS	110	108	NS	107	76	80			
INT-27	180	79	80	NS	65	75	NS I	65	50	52			
INT-28	630	37	23	NS	22	26	NS	47	37	60			
INT-29 INT-30	1,100 1,400	76	58	NS	35	40	NS	NS	NS	NS			
INT-31	70	45 82	24 30	NS NS	27	20 19	NS NS	NS	NS	NS			
INT-32	880	22	11	NS	12	16	NS	NS NS	NS NS	NS NS			
INT-33	120	20	17	NS	10	9	NS	NS	NS	NS			
INT-55	NS	122	61	NS	65	48	NS	78	44	29			
INT-56	NS	297	146	NS	132	120	NS	131	104	73			
INT-57 INT-58	NS	66	51	NS	75	68	NS	55	61	54			
INT-58	NS NS	34	33	NS	28	29	NS	26	21	23			
INT-60	NS	79 110	49 85	NS NS	50 86	42 80	NS NS	61 90	43	47			
INT-61	NS	39	40	NS	31	31	NS NS	32	75 27	73 39			
INT-62	NS	35	43	NS	29	20	NS	28	25	64			
INT-65	NS	66	61	NS	51	41	NS	50	NS	NS			
INT-66	NS	120	94	NS	94	85	NS	51	NS	NS			
INT-143	NS	NS	N\$	NS	NS	NS	NS	NS	NS	11			
INT-205	NS NS	61 107	39 86	NS NS	34 68	34 60	NS I	50	42	39			
INT-206	NS NS	107 45	88 60	NS NS	68 74	92	NS 95	51.5 100.1	46 70	20 69			
INT-208	NS	22	18	NS	11	18	NS	160.1	NS	10			
INT-209	NS	37	19	NS	13	17	NS	5	4.3	1.5			
INT-210	NS	27	28	NS	23	26	NS	28	27	20			
INT-211	NS	43	46	NS	29	41	NS	NS	NS	NS			
INT-212 INT-213	NS NS	27	38	NS	41	38	NS I	69	48	48			
INT-213	NS NS	83 46	70 31	NS NS	91 22	143 26	NS	89	205	66			
INT-215	NS NS	82	31 82	NS NS	22 56	67	NS NS	NS 43	NS 44	NS 41			
INT-216	NS	34	28	NS	26	34	NS	NS	NS	NS NS			
INT-217	NS	66	61	NS	60	62	NS	75	72	60			
INT-228	NS	NS	NS	NS	NS	NS	NS	NS	NS .	25			
INT-229	NS	NS	NS	NS	NS	NS	NS	NS I	NS	3.6			
INT-230	NS	NS	NS	NS	NS	NS	NS	NS	NS	16			
NS = Noi	Sampled												
Averages S1	784	387	755			555							
NT	957	387 I	439	NS	451	336	226	337	1	34			

Table 4-9

Dissolved Oxygen at Production Wells													
Well	9/1/94	11/23/94	1/1/95	3/26/95	4/5/95	5/28/95	6/30/95						
INT-1	1,1	1.4	3.0	1.0	1.2	0.8	3.2						
INT-2	1.5	0.8	0.8	0.4	1.4	0.4	1.1						
INT-3	1.0	1.0	1.4	0.4	1.7	0.6	0.8						
INT-4	0.9	1.1	1.2	0.5	1.0	0.8	1.8						
INT-5	2.3	1.1	1.0	1.0	1.8	0.8	1.3						
INT-6	0.7	1.3	1.4	1.0	1.4	0.6	1.0						
INT-7	1.5	1.0	0.6	NM	0.9	0.6	1.1						
INT-8	1.8	1.0	1.9	NM	1.4	0.6	1.0						
INT-9	1.2	NM	1.4	NM	1.8								
INT-10	1.9	1.4		1		0.6	0.8						
INT-11	í	(:	1.7	0.8	2.4	0.6	3.1						
INT-12	1,1	2.2	3.4	3.3	7.6	8.3	5.8						
-	2.2	13.8	13.8	15 +	15.0	7.2	5.0						
INT-13	0.9	7.8	1.6	NM	2.7	2.8	10.6						
INT-14	1.8	1.7	1.7	0.7	2.4	NM	NM						
INT-15	1.4	1.6	2.0	NM	NM	NM	NM						
INT-16	2.1	3.0	1.8	NM	NM	NM	N M						
INT-17	2.9	2.2	2.6	NM	NM	NM	NM						
INT-18	1.8	1.2	1.5	NM	1.2	NM	NM						
INT-19	2.4	1.4	1,1	NM	1.3	1.9	3.0						
INT-20	1.3	0.9	1.2	0.5	1.3	0.6	1.2						
INT-21	1.7	2.6	3.0	0.6	0.9	0.8	1.3						
INT-22	0.8	1.0	1.1	0.6	2.1	0.9	0.8						
INT-23	1.1	2.4	2.3	NM	NM	3.0	3.2						
INT-24	1.8	2.0	2.6	NM	1.8	3.8	2.7						
INT-25	12.5	15+	10.2	NM	NM	NM	NM						
INT-26	1.4	1.6	2.3	NM	1.7								
INT-27	1.6					2.8	1.5						
INT-27	Į.	1.2	1.4	NM	1.2	1.7	0.9						
INT-28	5.2	7.4	4.6	NM	1.0	1.9	1.0						
1	5.2	4.0	4.4	NM	NM	NM	NM						
INT-30	9.5	9.4	1.8	NM	NM	NM	NM						
INT-31	1.4	4.1	5.3	NM	NM	NM	NM						
INT-32	15+	15+	15+	NM	NM	NM	NM						
INT-33	2.5	1.9	2.5	NM	NM	NM	NM						
INT-55	3.4	2.0	2.2	NM	0.9	1.0	2.6						
1NT-56	1.2	1.5	1.6	NM	0.8	0.4	1.5						
INT-57	6.2	2.8	3.1	NM	2.9	0.8	5.7						
INT-58	1.9	1.9	1.6	NM	1.3	0.4	1.4						
INT-59	2.2	2.4	3.0	NM	1.2	1.0	2.2						
INT-60	1.8	1.9	2.4	NM	1.8	1.4	1.9						
INT-61	2.7	1.8	2.6	NM	2.0	1.5	1.8						
INT-62	1.0	2.1	2.6	NM	2.3	1.6	1.1						
INT-65	2.1	1.0	1.2	NM	1.6	NM	NM						
INT-66	2.2	1.0	3.1	NM	6.8	ı	1						
INT-143	NM	NM	NM	NM		NM	NM 15.						
INT-205	1.8	1.8		ı	NM 2.3	NM 1.1	15+						
INT-205	1.1		2.8	NM	2.3	1.1	3.5						
		2.4	1.2	NM	1.2	1.0	3.1						
INT-207	4.6	1.0	1.2	NM	0.7	0.8	0.8						
INT-208	1.3	3.4	11.8	NM	8.4	NM	13.0						
INT-209	2.8	15+	14.8	NM .	14.8	15+	15+						
INT-210	15+	15+	15+	NM	11.6	15+	15+						
INT-211	1.9	2.0	2.0	NM	NM	NM	NM						
INT-212	1.6	2.2	1.8	NM	2.2	0.7	2.4						
INT-213	1.2	1.2	2.0	NM	2.8	1.2	0.9						
INT-214	3.8	4.6	2.8	NM	NM	NM .	NM						
INT-215	5.2	3.6	3.0	NM	3.1	5.2	5.8						
INT-216	3.4	4.2	2.7	NM	NM	NM	NM						
INT-217	1.6	1.2	1.8	NM	1.1	1.0	1.7						
INT-228	NM	NM	NM	NM	NM	NM	2.1						
INT-229	NM	NM	NM	NM	NM	NM	1.0						
INT-230	NM	NM		NM									
111-230	ואוני ו	IAIAI	NM	I IVIVI	NM	NM	2.0						

Table 4-9 (Continued)

Dissolved Oxygen at Production Wells

	Dis	solved (Oxygen a	it Produc	ction We	lls	
Well	9/1/94	11/23/94	1/1/95	3/26/95	4/5/95	5/28/95	6/30/95
S1-1	2.1	0.8	1.6	NM	NM	NM	NM
S1-2	1.7	1.6	1.1	NM	NM	NM	NM
S1-3	1.8	1.0	1.1	NM	NM	NM	N M
S1-4	2.0	0.8	0.9	NM	NM	NM	NM
S1-5	NM	NM	1.6	NM	NM	NM	NM
S1-6	1.6	NM	0.8	NM	NM	NM	N M
S1-7	1.3	NM	1.2	NM	NM	NM	NM
S1-8	1.1	0.7	0.8	NM	NM	NM	NM
S1-9	8.0	NM	1.5	NM	NM	NM	NM
S1-10	0.6	0.5	1.0	NM	0.9	NM	NM
S1-11	1,1	0.9	1.4	NM	0.8	NM	NM
S1-12	1.1	1.3	1.5	NM	1.4	NM	NM
\$1-13	1.7	1.3	1.5	NM	0.7	NM	NM
S1-14	1.1	0.4	0.8	NM	0.8	NM	NM
S1-15	1.4	0.7	0.7	NM	0.9	NM	NM
S1-16	NM	1.2	2.9	NM	2.7	NM	NM
S1-17	1.2	0.8	1.4	NM	1.7	2.0	2.9
S1-18	2.4	1.4	2.2	NM	6.8	NM	NM
S1-19	3.4	3.9	6.6	NM	6.5	4.2	NM
S1-20	1.6	1.7	3.2	NM	13.0	10.2	NM
S1-21	15+	15+	15+	NM	13.6	15+	NM
S1-22	1.5	0.7	1.6	NM	1.8	1.4	0.8
\$1-23	1.9	1.5	4.8	NM	15.0	NM	NM
S1-24	0.9	2.6	1.8	NM	2.4	NM	NM
S1-25	0.8	0.8	1.4	NM	2.2	0.7	0.8
S1-26	2.2	0.7	1.1	NM	1.4	0.7	1.0
S1-27	1.4	1.9	2.0	NM	1.9	0.6	1.2
S1-28	1.2	1.2	1.7	NM	5.0	0.4	1.3
S1-29	1.9	2.2	4.4	NM	2.5	0.8	3.2
S1-30	1.5	1.1	4.2	NM	1.8	NM	1.0
S1-31	1.8	1.6	1.2	NM	NM	NM	NM
S1-32	1.4	1.5	1.6	0.6	2.2	NM	1.6
S1-33	1.4	NM	NM	NM	NM	NM	NM
S1-34	1.2	NM	NM	NM	NM	NM	NM
S1-35	1.7	NM	1.5	NM	NM	NM	NM
S1-36	0.9	NM	NM	NM	NM	NM	NM
S1-37	1.3	NM	NM	NM	NM	NM	NM
S1-38	15+	NM	NM	NM	NM	NM	NM
S1-39	1.3	2.9	3.2	NM	NM	NM	NM
S1-40	2.2	1.0	2.0	NM	NM	NM	NM
S1-41	1.0	1.0	1.4	NM	NM	NM	NM
S1-42	14.0	NM	NM	NM	NM	NM	NM NM
S1-43	2.2	NM	NM	NM	NM NM		
S1-44	1.8	6.0	1.8	NM		NM	NM NM
S1-45	2.9	2.3	5.1	NM	NM	NM	NM
S1-46	13.5	2.3 15+	5.1 15+		NM	NM	NM
S1-47	9.6	8.7	15+ 5.4	NM	NM .	NM	NM
S1-48	5.3	4.2	5.4 5.0	NM	NM	NM	NM
S1-60	5.3 6.1	4.4		NM	NM	NM	NM
S1-61	1.1	0.8	5.6	NM 0.9	NM	NM	NM
S1-62	1.4		1.2	0.8	2.0	2.6	2.6
S1-62 S1-63		2.8	12.6	NM	15.0	15+	15+
	2.2	0.9	4.0	0.9	4.2	9.7	4.2
S1-64	2.4	1.8	4.1	0.9	15.0	2.7	2.7

Table 4-10

Dissolved Oxygen at Monitoring Wells

	3/4/94	6/1/94	9/2/94	12/15/94		3/25/95	4/9/95	5/4/95	6/11/95
INT-106	15+	15+	15+	15.0	4.7	NM	NM	NM	NM
INT-107	15+	15+	15+	15.0	15+	NM	NM	NM	NM
INT-108	1.1	0.2	0.2	2.1	1.7	0.2	0.3	1.5	0.2
INT-109	1.6	0.8	0.5	2.2	0.2	NM	NM	NM	0. <u>2</u> NM
INT-110	1.6	0.9	0.8	0.8	0.4	NM	NM	NM	NM
INT-111	1.2	1.4	2.0	2.8	1.4	NM	NM	NM	NM
INT-112	15+	15+	15+	15.0	15+	15+	15+	15+	15+
INT-113	0.9	15+	15+	10.3	2.0	NM	NM	NM	NM
INT-114	1.6	0.8	0.4	1.5	0.2	NM	NM	NM	NM
INT-115	1.2	1.0	0.8	4.6	0.7	NM	NM	NM	NM
INT-116	2.4	3.8	NM	2.4	NM	NM	NM	NM	NM
INT-117	2.7	2.8	NM	3.1	NM	NM	NM	NM	NM
INT-118	4.8	2.2	NM	2.0	NM	NM	NM	NM	
INT-119	1.1	0.7	1.1	1.1	0.3	NM	NM	NM	NM
INT-132	2.0	1.8	0.4	3.6	0.3	NM	NM	NM	NM
INT-133	0.8	1.2	0.5	1.9	0.7	NM	NM	NM	NM
INT-134	0.6	0.6	0.6	1.9	0.6	NM	NM	NM	NM
INT-135	0.6	0.8	0.6	6.8	0.8	0.2	0.4	0.2	NM
INT-137	1.0	1.8	0.8	3.1	2.4	NM	NM	NM	1.9
INT-138	0.8	0.8	0.6	2.3	0.6	NM	NM	NM	NM
INT-139	0.6	0.8	0.4	1.1	0.5	NM NM	NM	NM NM	NM
P-5	1.0	0.8	0.9	0.6	0.5				NM
P-6	1.0	0.6	0.1	NM	NM	NM	NM NM	NM	NM
REI-10-2	1.2	0.8	0.3	1.1	0.2	NM		NM	NM
REI-10-3	0.6	0.8	0.4	0.8	0.2	NM	NM NM	NM	NM
REI-12-2	0.8	2.0	NM	2.4	1	NM		NM	NM
S1-101	1.1	0.8	0.2	0.8	NM 0.2	NM NM	NM NM	NM	NM
S1-102	1.6	0.6	0.2	0.6	0.2	0.3	0.2	NM	NM
S1-102	0.8	6.6	2.3	1.2	0.2	NM	NM	0.3 NM	0.3
S1-104	1.6	0.8	1.8	3.9					NM
S1-105	15+	15+	0.2	3.9 1.4	15+	NM	NM	NM	NM
S1-106	0.8	0.8	0.2	0.6	6.8 0.1	NM	NM 0.5	NM 0.3	NM
S1-107	5.4	15+	15+	15.0	15+	0.2 NM	U.S NM	NM	0.3
S1-108	1.6	0.0	0.6	15.0	15+		NM	NM	NM
S1-100	8.4	15+	15+	5.2	15+	NM			NM
S1-109	1.3	1.4	0.6	5.∠ 0.6	0.2	NM	NM NM	NM NM	NM
S1-111	2.0	0.8	15+	15.0	15+	NM	NM NM		NM
S1-112	0.6	1.4	0.7			NM		NM	NM
S1-113	1.8	0.8	0.7	2.4	0.2	NM	NM	NM	NM 0.2
<u> </u>	1.0	0.8	0.4	2.7	0.5	0.3	0.3	0.2	0.3

Table 4-10 (Continued)

Dissolved Oxygen at Monitoring Wells

	3/4/94	6/1/94	9/2/94	12/15/94	2/7/95	3/25/95	4/9/95	5/4/95	6/11/95
ERT-1	1.0	0.8	0.2	1.2	NM	NM	NM	NM	NM
ERT-3	1.0	1.0	0.2	1.8	NM	NM	NM	NM	NM
ERT-7	1.0	0.8	0.2	NM	NM	NM	NM	NM	NM
ERT-8	1.0	0.6	0.2	2.2	NM	NM	NM	NM	NM
ERT-9	1.0	1.3	0.4	NM	NM	NM	NM	NM	NM
ERT-22	NM	NM	NM	NM	NM	NM	0.6	8.4	5.6
ERT-24	0.8	NM	NM	2.0	NM	NM	NM	NM	NM
ERT-25	1.8	1.0	NM	1.6	NM	NM	NM	NM	NM
ERT-26	0.8	NM	NM	2.3	NM	NM	NM	NM	NM
ERT-27	1.9	NM	NM	NM	NM	NM	NM	NM	NM
ERT-28	6.4	NM	NM	4.8	NM	NM	NM	NM	NM
ERT-29	1.2	NM	NM	NM	NM	NM	NM	NM	NM
ERT-30	7.5	NM	NM	NM	NM	NM	NM	NM	NM
ERT-33	1.1	0.4	NM	1.1	NM	NM	NM	NM	NM
ERT-34	0.9	0.6	NM	NM	NM	NM	NM	NM	NM
FLTG-1	0.8	0.3	NM	3.6	NM	NM	NM	NM	NM
FLTG-2	1.0	1.2	NM	NM	NM	NM	NM	NM	NM
FLTG-3	1.3	0.8	NM	NM	NM	NM	NM	NM	NM
FLTG-4	1.0	0.6	NM	NM	NM	NM	NM	NM	NM
FLTG-5	0.8	0.4	NM	3.0	NM	NM	NM	NM	NM
FLTG-6	1.2	1.6	NM	NM	NM	NM	NM	NM	NM
FLTG-7	1.6	0.6	0.8	2.0	0.4	0.2	0.3	0.2	0.3
FLTG-8	1.7	8.0	0.4	2.5	0.4	NM	NM	NM	NM
FLTG-9	1.2	11.4	15+	NM	15+	NM	NM	NM	NM
FLTG-10	1.1	2.2	2.6	3.2	1.2	NM	NM	NM	NM
FLTG-11	0.6	0.6	0.5	NM	NM	NM	NM	NM	NM
FLTG-12	0.8	1.8	0.6	NM	NM	NM	NM	NM	NM
FLTG-13	0.3	0.8	0.4	2.6	1.3	NM	NM	NM	NM
FLTG-14	0.6	0.8	0.4	2.4	0.2	NM	NM	NM	NM
FLTG-15	0.8	1.2	NM	2.4	NM	NM	NM	NM	NM
INT-59-P1	1.6	0.5	0.6	NM	1.2	NM	NM	NM	NM
INT-59-P4	1.4	0.9	0.6	NM	0.6	NM	NM	NM	NM
INT-60-P1	1.7	1.0	0.4	NM	0.2	NM	NM	NM	NM
INT-60-P4	1.4	0.8	0.4	NM	0.5	NM	NM	NM	NM
INT-101	1.0	0.4	0.2	2.6	0.3	0.2	0.3	0.3	1.0
INT-102	0.6	0.6	NM	15+	15+	14.9	15+	15+	6.9
INT-103	2.2	0.7	0.1	1.3	0.2	NM	NM	NM	NM
INT-104	2.3	4.8	0.3	4.6	3.2	NM	NM	NM	NM
_INT-105	1.2	0.7	0.4	4.6	0.4	NM	NM	NM	NM

Table 4-10 (Continued)

Dissolved Oxygen at Monitoring Wells

	3/4/94	6/1/94	9/2/94	12/15/94	2/7/95	3/25/95	4/9/95	5/4/95	6/11/95
S1-114	0.8	1.2	0.4	1.5	0.4	NM	NM	NM	NM
S1-115	1.8	1.6	NM	3.2	NM	NM	NM	NM	NM
S1-116	0.8	0.7	NM	2.1	NM	NM	NM	NM	NM
S1-117	2.0	2.3	NM	2.9	NM	NM	NM	NM :	NM
S1-118	1.6	0.6	NM	3.4	NM	NM	NM	NM	NM
S1-135	1.2	1.3	0.2	0.8	NM	NM	NM	NM	NM
S1-137	1.0	1.0	0.8	1.0	NM	NM	NM	NM	NM
\$1-50-P1	15+	1.7	15+	NM	NM	NM	NM	NM	NM
S1-50-P3	15+	15+	11.6	NM	1.6	NM	NM	NM	NM
S1-51-P1	1.0	1.3	15+	NM	NM	NM	NM	NM	NM
S1-51-P3	1.5	0.8	0.6	NM	0.3	NM	NM	NM	NM
S2-101	NM	NM	NM	3.8	NM	NM !	NM	NM	NM
SG-1	NM	NM	NM	NM	NM	NM	NM	NM	NM
SG-2	NM	NM	NM	NM	NM	NM	NM	NM	NM
SG-3	NM	NM	NM	NM	NM	NM	NM	NM	NM
SG-4	NM	NM	NM	NM	NM	NM	NM	NM	NM
SG-5	NM	NM	NM	NM	NM	NM	NM	NM	NM
W-3	1.1	0.2	0.5	1.8	0.2	NM	NM	NM	NM
W-4	1.4	0.4	0.5	NM	NM	NM	NM	NM	NM
W-5	1.6	0.2	0.4	NM	NM	NM	NM	NM	NM
W-7	0.8	1.0	0.3	2.6	NM	NM	NM	NM	NM

5.0 GROUNDWATER TREATMENT PLANT

5.1 Summary of Activities

Flows to the GWT plant decreased an additional 1.5 million gallons in June. The S1 wells that have reached criteria and were turned off June 5, 1995, account for this decrease.

A slight increase in Total Organic Carbon in the influent has also occurred with the shut off of these wells.

Flows through the plant are at 45% of the volumes recorded last year. TOC has reduced 65%-75% in the same time frame as clean-up is being achieved.

Adjustment in the plant continued in June to accommodate these changes.

There have been no discharge excursions nor major mechanical failures in the groundwater treatment plant this reporting period.

Total flows for June, 1995:

Water discharged to the San Jacinto River - 4,130,100 gallons

Water discharged to the Lagoon - 0

Sludge discharged to the Lagoon - 46,375 gallons

Water processed through the GWT - 4,077,500 gallons

Water discharged to the South Pond - 0

Water blended passed Carbon Filter - 3,733,400 gallons

Water processed from Cell D to GWT plant: metered - 0

Cell D injection at S1-1 through S1-9: metered - 177,800 gallons

5.2 Inoculum/Nutrient Addition

The following have been introduced into the bioreactors/clarifier:

Nutrients:

310 gallons Diammonium Phosphate

Microbes:

16 oz. French Limited Isolated Microbes

Coagulant:

~ 6.0 gallons Percol 778 Cationic Polymer

5.3 Maintenance

Table 5-1 lists the preventive maintenance items performed in June.

5.4 Operating Data

Table 5-2 summarizes the laboratory analysis of the treated water discharged to the San Jacinto River.

TABLE 5-1

Preventive Maintenance

Day	Action
June 2	Completed monthly, quarterly inspection of all electrical tools, extension cords, office equipment, and ladders.
June 5	Lubed blowers 1, 2, & 3.
June 6	Adjusted belt tension on blower #2.
June 8	Rotated SALA pumps.
June 12	Lubed and exercised valves GWT.
June 15	Lubed all gate rollers.
June 19	Lubed pumps in GWT and Chemical Storage.
June 22	Lubed all "Red" valves.
June 30	Quarterly maintenance and factory calibration of TOC analyzer.

TABLE 5-2
Treated Water Results Summary

			рH	T	ss	To	oc	08	kG .	Ben	zene	Chlo	r HC's	Total	PCB.	Napt	halene
Collected	Set No.	16	3-9)	5 F	PPM	55	PPM	15 F	PPM	150	PPB	500	PPB	0.69	5 PPB	300	PPB
		Daily	R-Avg	Daily	R-Avg	Daily	R-Avg										
2-Mar-95	M03A0313	7.47		.5		8.5		2.5		2.5		145.		.16		5.	
6-Mar-95	M03A0314	7.49		1.		8.1		2.5		2.5		128.		.16		5.	
9-Mar-95	M03A0315	7.38		1.		8.		2.5		2.5		193.		.16		5.	
13-Mar-95	M03A0316	7.64		5.		7.2	j	2.5	i	2.5		111.		.16		5.	
16-Mar-95	M03A0317	7.55		.5		6.		2.5		2.5		150.		.16		5.	
20-Mar-95	M03A0318	7.41		.5		6.6		2.5		2.5	i	97.		.16		5.	
23-Mar-95	M03A0319	7.45		1.		6.		2.5	- 1	2.5		185.		.16		5.	
27-Mar-95	M03A0320	7.83		3.		12.2		2.5		6.	İ	325.		.16		5.	
30-Mar-95	M03A0321	7.47	7.5	7.	2.2	11.9	8.3	2.5	2.5	6.	3.3	342.	186	.16	.16	5.	5.
3-Apr-95	M03A0322	7.42	7.5	1.	2.2	11.7	8.6	2.5	2.5	6.	3.7	269.	200	.16	.16	5.	5.
6-Apr-95	M03A0323	7.45	7.5	2.	2.3	12.2	9.1	2.5	2.5	6.	4.1	239.	212	.16	.16	5.	5.
10-Apr-95	M03A0324	7.38	7.5	2.	2.4	11.1	9.4	2.5	2.5	6.	4.4	230.	216	.16	.16	5.	5.
13-Apr-95	M03A0325	7.62	7.5	3.	2.2	12.9	10.1	2.5	2.5	6.	4.8	364.	245	.16	.16	5.	5.
17-Apr-95	M03A0326	7.59	7.5	11.	3.4	12.9	10.8	2.5	2.5	6.	5.2	247.	255	.16	.16	5.	5.
20-Apr-95	M03A0327	7.75	7.6	1.	3.4	12.1	11.4	2.5	2.5	6.	5.6	226.	270	.16	.16	5.	5.
24-Apr-95	M03A0328	7.67	7.6	13.	4.8	13.	12.2	2.5	2.5	6.	6.	269.	279.	.16	.16	5.	5.
27-Apr-95	M03A0329	7.51	7.5	1.	4.6	12.2	12.2	2.5	2.5	2.5	5.6	236.	269	.16	.16	5.	5.
1-May-95	M03A0330	7.63	7.6	1.	3.9	12.1	12.2	2.5	2.5	2.5	5.2	177.	251	.16	.16	5.	5.
4-May-95	M03A0331	7.91	7.6	4.	4.2	12.5	12.3	2.5	2.5	2.5	4.8	222.	246	.16	.16	5.	5.
8-May-95	M03A0332	7.95	7.7	4.	4.4	11.3	12.2	2.5	2.5	2.5	4.4	228.	244	.16	.16	5.	5.
11-May-95	M03A0334	7.97	7.7	4.	4.7	10.9	12.21	2.5	2.5	2.5	4.1	235.	245	.16	.16	5.	5.
15-May-95	M03A0333	7.87	7.8	8.	5.2	13.7	12.3	2.5	2.5	2.5	3.7	209.	228	.16	.16	5.	5.
18-May-95	M03A0335	7.73	7.8	6.	4.7	11.	12.1	2.5	2.5	6.	3.7	374.	242	.16	.16	5.	5.
22-May-95	M03A0338	7.88	7.8	1.	4.7	31.	14.2	2.5	2.5	6.	3.7	274.	247	.16	.16	5.	5.
29-May-95	M03A0337	7.76	7.8	1.	3.3	45.	17.7	2.5	2.5	6.	3.7	227.	242	.16	.16	5.	5.
5-Jun-95	M03A0338	7.53	7.8	.5	3.3	12.1	17.7	2.5	2.5	2.5	3.7	189.	237	.16	.16	5.	5.
12-Jun-95	M03A0339	7.78	7.8	1.	3.3	45.8	21.5	2.5	2.5	2.5	3.7	188.	238	.16	.16	5.	5.
19-Jun-95	M03A0440	7.68	7.8	5.	3.4	7.	20.9	2.5	2.5	2.5	3.7	144.	230	.16	.16	5.	5.
26-Jun-95	M03A0441	7.71	7.77	1.	3.1	9.1	20.6	2.5	2.5	2.5	3.67	128.	219	.16	.16	5.	5
2√Jul∙95	M03A0442	7.47	7.71														

Chlorinated hydrocarbons value is the sum of detected concentrations of 21 volatile chlorinated hydrocarbons on target compound list.

TABLE 5-2 (Continued)
Treated Water Results Summary

	1		A.s	E			d		Cr	-		P	ъ		/n	-	łg	1	Ni		ie .	-	2		20
Collected	Set No.	150	PPB	1000	PPB		PPB		PPB		PPB	66	PPB		PPB		PPB		PPB		PPB		PB		PHB
		Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg
2-Mar-95	M03A0313	23.		133.		.1		2.		1.		.5		15.		.1		8.		1.3		.5		6.	
6-Mar-95	M03A0314	17.		130.		1.		1.		3.		2.2		3.		.1		2.5		.5		.8		8.	
9-Mar-95	M03A0315	24.		111.		.1		.2	i	.8		.5	i	4.	ľ	.1		4.	i	1.3	i	.2	i	6.	į
13-Mar-95	M03A0316	17.		121.		1.1		.2		1,		.5		41.		.1		3.		1.3		.2		5.	l
16-Mar-95	M03A0317	23.		114.		.1		.3		3.		.5		2.		.1		3.	- 1	1.3		.2		11.	- 1
20-Mar-95	M03A0318	18.		112.		.1		.2		3.		.5	1	2.		.1		2.	1	1.3]	.2		3.	- 1
23-Mar-95	M03A0319	19.	1	119.		.1	i	.2	i	2.		.5	Í	2.		.1		3.	į	1.3	Į.	.2	- (4.	- 1
	M03A0320	14.		130.		.1		3.		2.		.5]	22.		.1		5.		1.3		.2		40.	- 1
=	M03A0321	19.	19.3	132.	122	.1	.2	2.	1.	2.	2.	.5	.7	25.	12.9	.1	.1	6.	4.1	1.3	1.2	.2	.3	8.	10.1
•	M03A0322	17.	18.7	127.	122	.1	.2	.2	.8	2.	2.1	.5	.7	9.	12.2	.1	.1	1.	3.3	1.3	1.2	.2	.2	15.	11.1
•	M03A0323	23.	19.3	102.	119	.1	.1	.2	.7	1.	1.9	.5	.5	4.	12.3	.1	.1	1.	3.1	1.3	1.3	.2	.2	4.	10.7
•	M03A0324	12.	18.	157.	124	.1	.1	2.	.9	2.	2.	2.	.7	32.	15.4	.1	.1	4.	3.1	1.3	1.3	.2	.2	8.	10.9
13-Apr-95	M03A0325	44.	21.	107.	122	.1	.1	1.	1.	2.	2.1	.5	.7	11.	12.1	.1	.1	6.	3.4	1.3	1.3	.2	.2	3.	10.7
•	M03A0326	26.	21.3	171.	129	.1	.1	14.	2.5	2.	2.	1.	.7	108.	23.9	.1	.1	14.	4.7	1.3	1.3	.2	.2	17.	11.3
20-Apr-95	M03A0327	24.	22.	129.	130	.7	.2	7.	3.3	9.	2.7	2.	.9	43.	28.4	.1	.1	10.	5.6	1.3	1.3	.2	.2	34.	14.8
24-Apr-95	M03A0328	21.	22	115.	130.	.1	.2	7.	4.	1.	2.6	.5	.9	38.	32.4	.1	.1	6.	5.9	1.3	1.3	.2	.2	4.	14.8
27-Apr-95	M03A0329	24.	23.3	110.	128	.1	.2	2.	3.9	2.	2.6	.5	.9	12.	31.3	.1	.1	7.	6.1	1.3	1.3	.2	.2	9.	11.3
· · · · · · · · · · · · · · · · · · ·	M03A0330	16.8	23.1	106.	125	1.1	.3	.7	3.8	.7	2.4	.5	.9	6.8	29.3	.1	.1	8.5	6.4	.8	1.2	.5	.2	.2	10.5
•	M03A0331	21.	23.5	149.	127	1.1	.4	5.9	4.4	1.	2.3	.5	.9	70.4	36.1	.1	.1	7.6	7.1	.8	1.2	.5	.2	16.2	10.6
•	M03A0332	16.	22.8	126.	130.	.1	.4	1.	4.5	1.6	2.4	.5	.9	6.	36.4			5.	7.6	1.3	1.2	.2		4.	10.6
11-May-95		17.	23.3	158.	130	.1	.4	3.	4.6	.9	2.2	.5	.7	22.	35.2	.1	.1	6.	7.8	1.3	1.2	.2	.2	5.	10.3
15-May-95	-	17.	20.3	141.	134	.1	.4	2.	4.7	1.	2.1	.5	.7	21.	36.4	.1	.1	5.	7.7	1.3	1.2	.2	.2	4.	10.4
18-May-95		18.	19.4	122.	128	.1	.4	.2	3.2	.3	1.9	.5	.7	4.	24.8	.1	.1	3.	6.5	1.3	1.2	.2	.2	1.5	8.7
22-May-95 29-May-95		14.	18.3 17.8	130. 176.	129	.1	.3	1.	2.5	.5	1.	.5	.5	9.	21.	.1	.1	5.	5.9	1.3	1.2	.2	.2	7.	5.7
•	M03A0337	16.			135	.1	.3	2.	2.	.3	.9	.5	.5	27.	19.8	- 1	.1	1.	5.3	2.8	1.3	.2	.2	4.	5.7
		12.	16.4	191.	144	.1	.3	2.	2.	1.	.8	.5	.5	18.	20.5	-1	-1	4.	5.	1.3	1.3	.2	.2	5.	5.2
	M03A0339 M03A0340	13.	16. 15.2	204. 213.	155	.1	.2	1.	2.	1,	.8	.5	.5	2.5	20. 12.8	.1	-1	4.5	4.6	1.3	1.4	.2	.2	3.	5.5
	M03A0340	14.	ı		162 166	-1	-:	ı. -	1.5	.8 7	.8 .7	.5	.5	6.		.1	- '	5.	4.3	1.3	1.4	.2	.2	1.5	3.9
∠o-Jun-95	MUJAUJ41	15.	15.1	155.	166	.1	1	/	1.4	<u>'-</u>	/	4.	.9	2.	12.4		,1	4.	4.2	1.3	1.4	.2		6.	4.1

Metals values in PPB.

6.0 AMBIENT AIR MANAGEMENT

Ambient air quality management continued on an "as-needed" basis to protect the environment, human health, and site workers.

6.1 Summary of Activities

Collected and analyzed three time-integrated personnel exposure samples; the measured levels of volatile organic compounds were well below the action levels.

Sampled the ambient air in all work areas several times per shift and on a random "spotcheck" basis; there were no levels of volatile organic compounds which required response action. Sampled ambient air in special work areas where burning and/or welding was planned. Sampled ambient air continuously in areas where exposure could occur and where confined space work occurred.

6.2 Problems and Response Action

<u>Problem</u>	Response Action
Calibrate portable vapor meters.	Train operators to calibrate; refurbish all meters.
Sampling "hot" wells.	Require respirator use when sampling "hot" wells.
Ambient air quality in all work areas.	Check all work areas with portable meter several times per day.
H ₂ S levels in some well vaults.	Vent vault and purge with air before working in the vaults.

6.3 Problems Resolved

None.

6.4 On-going Events/Activities

Measure ambient air quality in all work areas several times per day.

Conduct periodic time-integrated sampling in all major work areas.

Require respiratory protection when sampling "hot" wells.

Conduct necessary air sampling and analyses to issue "burn" permits.

Closely monitor ambient air quality in the vicinity of new projects/activities.

Conduct respirator fit tests on all employees.

7.0 QUALITY ASSURANCE/QUALITY CONTROL

7.1 Summary of Activities

7.1.1 Sampling

One set of personal air monitoring samples were collected in June. The following is a summary of current routine and special air matrix code sample specifics:

MATRIX CODE

SAMPLE SPECIFICS

M01D

TF at three locations

TF = Tenax® front tube

Table 7-1 is a summary of the air, soil and water samples collected during the month of June. Table 7-2 is a summary of scheduled sampling events for the month of June.

7.1.2 Data Validation Activities Summary

7.1.2.1 Treated Water Samples

Data validation was completed for sample sets M03A0332, M03A0333, M03A0334, M03A0335, M03A0336, M03A0337, M03A0338 and M03A0339. These samples were collected between May 8, 1995 and June 12, 1995. QC failures are summarized in Table 7-3. Completeness values are summarized in Tables 7-4 through 7-8.

7.1.2.2 Groundwater Samples

Level I data validation was completed for the monthly groundwater monitoring sample sets collected in late May and early June. There were no significant analytical QC failures on these sample data.

7.1.2.3 Other Samples

All other special sample sets were validated manually this period.

French Ltd. Project

FLTG. Incorporated

7.2 Data Validation QC Summary and Discussion

7.2.1 Level I and Level II QC Philosophy

The Quality Assurance Project Plan (QAPP) defines data validity in terms of procedural requirements which must be followed for data comparability, and numerical data quality objectives which must be met to assure precision and accuracy of the results. Precision, accuracy and completeness are the numerical Data Quality Objectives (DQOs) established for the French Project by the QAPP. The intent of the data validation process is to verify that the documentation and quality control data provided by the laboratory properly substantiate the required data quality.

For purposes of data validation procedures, the QAPP defines two QC levels: Level I and Level II. Level I data validation is specified for process control and progress monitoring sample data validation and Level II data validation is specified for remediation verification sample results and treated water discharge sample results.

7.2.2 QA Issues

7.2.2.1 Matrix Interference on Groundwater Samples

Starting with the June monthly groundwater sampling event, extra volume will be collected from every 10th well sampled for a set of MS/MSD samples. The samples and analytical data will be treated as QC level II. This deviates from the normal routine of treating groundwater samples as level I. This procedure will serve to ascertain the potential for matrix effect QC failures on groundwater samples. This extra data may also be used to provide a base for the matrix spike/duplicate recovery limits to be used for remediation verification samples. This data will be reported in the monthly report beginning with the July monthly report.

TABLE 7-1 Samples Collected - June, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	Lab
M01D005701	Personal air monitoring	WTP Operator	6/07	6/08	Υ	Α
M01D005702	Personal air monitoring	Well Maint.	6/07	6/08	Υ	Α
M01D005703	Personal air monitoring	T-101 Area	6/07	6/08	Υ	Α
M03A033801	Treated water discharge	CF Out	6/05	6/06	Y	Α
M03A033901	Treated water discharge	CF Out	6/12	6/13	Y	Α
M03A034001	Treated water discharge	CF Out	6/19	6/20	N	A
M03A034101	Treated water discharge	CF Out	6/26	6/27	N	Α
M04B004001	Monthly groundwater monitoring	S1-120	6/01	6/02	Υ	A
M04B004002	Monthly groundwater monitoring	INT-110	6/01	6/02	Y	Α
M04B004003	Monthly groundwater monitoring	INT-123	6/01	6/02	Y	A ·
M04B004004	Monthly groundwater monitoring	REI-10-2	6/01	6/02	Y	Α
M04B004005	Monthly groundwater monitoring	S1-050-P-2	6/01	6/02	Υ	Α
M04B004006	Monthly groundwater monitoring	S1-102	6/01	6/02	Υ	Α
M04B004007	Monthly groundwater monitoring	S1-109	6/01	6/02	Y	Α
M04B004008	Monthly groundwater monitoring	S1-128	6/01	6/02	Y	Α
M04B004009	Monthly groundwater monitoring	S1-127	6/01	6/02	Y	Α
M04B004010	Monthly groundwater monitoring	INT-119	6/01	6/02	Υ	A

Labs: A = American Analytical and Technical Services N = North Water District Lab K = Chester LabNet-Houston

TABLE 7-1 Samples Collected - June, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	Lab
M04B004011	Monthly groundwater monitoring	S1-107	6/01	6/02	Y	Α
M04B004012	Monthly groundwater monitoring	S1-114	6/01	6/02	Y	Α
M04B004101	Monthly groundwater monitoring	S1-132	6/02	6/03	Υ	Α
M04B004102	Monthly groundwater monitoring	S1-134	6/02	6/03	Υ	Α
M04B004103	Monthly groundwater monitoring	INT-141	6/02	6/03	Υ	Α
M04B004104	Monthly groundwater monitoring	INT-144	6/02	6/03	Υ	Α
M04B004201	Monthly groundwater monitoring	S1-104	6/06	6/07	Y	A
M04B004202	Monthly groundwater monitoring	S1-121	6/06	6/07	Y	Α
M04B004203	Monthly groundwater monitoring	S1-122	6/06	6/07	Y	A
M04B004204	Monthly groundwater monitoring	S1-061	6/06	6/07	Y	A
M04B004205	Monthly groundwater monitoring	S1-062	6/06	6/07	Y	Α
M04B004206	Monthly groundwater monitoring	INT-120	6/06	6/07	Y	Α
M04B004301	Monthly groundwater monitoring	INT-131	6/07	6/08	Υ	Α
M04B004302	Monthly groundwater monitoring	S1-126	6/07	6/08	Y	Α
M04B004303	Monthly groundwater monitoring	W-7	6/07	6/08	Υ	Α
M04B004304	Monthly groundwater monitoring	ERT-10	6/07	6/08	Y	A
M06C002801	Monthly process water monitoring	T-101 Eff	6/07	6/08	Y	Α

Labs: A = American Analytical and Technical Services N = North Water District Lab

K = Chester LabNet-Houston

TABLE 7-1 Samples Collected - June, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	Lab
M06C002802	Monthly process water monitoring	T-101 Inf	6/07	6/08	Y	Α
M06C002803	Monthly process water monitoring	R1	6/07	6/08	Y	Α
M06C002804	Monthly process water monitoring	R2	6/07	6/08	Υ	Α
M06C002805	Monthly process water monitoring	Cell D Ligr	6/07	6/08	Y	Α
M08A002101	Potable water monitoring	Potable H2O	6/12	6/13	N	A
M08B000901	Potable water monitoring	Potable H20	6/12	6/13	N	N
M08C001201	Riverdale water monitoring	RD-3	6/08	6/09	Υ	N
M08D001501	Riverdale water monitoring	RD-3	6/08	6/09	Y	A
S14C000801	New West INT wells	231A	6/19	6/20	Υ	Α
S14C000802	New West INT wells	231-A	6/19	6/20	Y	Α
S14C000901	New West INT wells	INT-235	6/22	6/23	Υ	Α
S14C000902	New West INT wells	INT-236	6/22	6/23	Υ	Α
S14C000903	New West INT wells	INT-238	6/22	6/23	Y	Α
S14C001001	New West INT wells	INT-232	6/27	6/28	N	Α

A = American Analytical and Technical Services
 N = North Water District Lab
 K = Chester LabNet-Houston

TABLE 7-2

Scheduled Sampling Events June, 1995

Date Sampled	Set Number	Description	Schedule
6/01/95	M04B0040	Groundwater monitoring	Monthly
6/02/95	M04B0041	Groundwater monitoring	Monthly
6/06/95	M04B0042	Groundwater monitoring	Monthly
6/07/95	M04B0043	Groundwater monitoring	Monthly
6/19/95	S14C0008	New West INT wells	Special
6/22/95	S14C0009	New West INT wells	Special
6/27/95	S14C0010	New West INT wells	Special
6/07/95	M01D0057	Personal air monitoring	Monthly
6/12/95	M08A0021	Potable water monitoring	Quarterly
6/12/95	M08B0009	Potable water monitoring	Quarterly
6/07/95	M06C0028	Process monitoring	Monthly
6/08/95	M08C0012	Riverdale well monitoring	Monthly
6/08/95	M08D0015	Riverdale well monitoring	Monthly
6/05/95	M03A0338	Treated water discharge	Weekly
6/12/95	M03A0339	Treated water discharge	Weekly
6/19/95	M03A0340	Treated water discharge	Weekly
6/26/95	M03A0341	Treated water discharge	Weekly

TABLE 7-3

Treated Water QC Failure Summary

Sample	Test	QC Failure	Explanation	Corrective
Date				Action
05/08/95	Mn Ba	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS and Spike were within QC limits.
05/08/95	SV	Spike Accuracy	Spike accuracy values were outside control limits for 4-Nitrophenol on MS/MSD pair.	None required - FLTG QAP only specifies accuracy control limits for Naphthalene.
05/08/95	SV	Su Recov.	Surrogate Tribromophenol was outside QC limits on sample -01MS.	None required - 1 base/neutral and 1 acid surrogate are allowed to be outside QC limits.
05/11/95	SV	Su Recov.	Surrogate Tribromophenol was outside QC limits on sample -01.	None required - 1 base/neutral and 1 acid surrogate are allowed to be outside QC limits.
05/11/95	Zn Pb	Duplicate Precision	Duplicate precision was outside control limits.	None required - LCS, and Spike were within QC limits.
05/15/95	Mn Ba	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS and Spike were within QC limits.
05/15/95	SV	Su Recov.	Surrogates Tribromophenol and 2- Fluorbiphenyl were outside QC limits on sample -01 MS.	None required - 1 base/neutral and 1 acid surrogate are allowed to be outside QC limits.
05/15/95	SV	Spike Accuracy	Spike accuracy values were outside control limits for 4-Nitrophenol on MS/MSD pair.	None required - FLTG QAP only specifies accuracy control limits for Naphthalene.
05/18/95	Ва	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS, Dup and Spike were within QC limits.
05/22/95	Ва	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS, Dup and Spike were within QC limits.
05/22/95	SV	Spike Accuracy	Spike accuracy values were outside control limits for 4-Nitrophenol on MS/MSD pair.	None required - FLTG QAP only specifies accuracy control limits for Naphthalene.
05/22/95	VOA	Spike Precision	Spike precision RPD on Toluene was outside QC limits.	None required - FLTG QAP only specifies precision control limits for vinyl chloride and benzene.
05/29/95	Ва	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS, Dup and Spike were within QC limits.
05/29/95	Mn	Spike Accuracy	Spike accuracy % recovery was outside control limits.	None required - LCS and Dup were within QC limits.
05/29/95	sv	Spike Accuracy	Spike accuracy value was outside control limits for 4-Nitrophenol on sample M03A033701 MS.	None required - FLTG QAP only specifies accuracy control limits for Naphthalene.
06/05/95	PCB	SU Recovery	Surrogate TCX was outside control limits (low) on column 1 for sample M03A033801 MSD	None required - column 2 recovery was within control limits.
06/05/95	sv	Spike Accuracy	Spike accuracy values were outside control limits for 4-Nitrophenol on MS/MSD pair.	None required - FLTG QAP only specifies accuracy control limits for Naphthalene.

7.2.3 Completeness Summaries

Tables 7-4 through 7-8 summarize completeness values for VOA, SVA, PCBs, Metals and miscellaneous parameters on treated water samples.

VOA (Table 7-4)

A total of 7 VOA sample sets have been validated with all categories meeting Project Completeness Goals.

SVA (Table 7-5)

A total of 7 SVA sample sets have been validated for this time period. All categories meet or exceed Project Completeness Goals with the exception of sample matrix effect. This is due to matrix effect failures in the early stages of the project and the MS/MSD accuracy failures that occurred during September and October 1994.

PCBs (Table 7-6)

A total of 7 PCB sample sets have been validated for this time period with all samples, meeting data quality objectives. All categories meet or exceed Project Completeness Goals.

Metals (Table 7-7)

A total of 7 sample sets have been validated for this time period. Project Completeness Goals are met or exceeded in all categories.

Miscellaneous Parameters (Table 7-8)

A total of 7 sample sets have been validated for this time period. Project completeness goals are met or exceeded in all categories.

TABLE 7-4

Completeness Summary M03A Treated Water Volatile Organics Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	Project to Date	PROJECT GOAL
Analysis Holding Time 12 Hour Window	100 100	100 100	100 100
SU Check SU1 (d4-1,2-DCE) SU2 (d8-Toluene) SU3 (4-BFB) IS Check IS1 (BrCIMethane) IS2 (1,4-DiFlBenzene) IS3(d5-ClBenzene)	100 100 100 100 100 100 100	94 97 98 99 100 100 100	90 90 90 90 90 90
Sample RT/RRT Check Vinyl Chloride Accuracy Precision	100 100 100	* 99 99	90 90
Benzene Accuracy Precision	100 100	99 100	90 90
No Group Matrix Effect No Sample Matrix Effect	100 100	*	90 90
Tune Check Overall ICAL Check Overall CCAL Check Overall Lab Blank Check	100 100 100 100	* *	

 $^{^*}$ - Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-5

Completeness Summary M03A Treated Water Semivolatile Organic Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	Project to Date	PROJECT GOAL
Extract Holding Time	100	100	100
Analysis Holding Time	100	100	100
12 Hour Window	100	100	100
SU Check	100	95	90
SU1 (2-FIPhenol)	100	95	90
SU2 (d5-Phenol)	100	94	90
SU3 (d5-Nitrobenz)	100	96	90
SU4(2-FIBiphenyl)	100	98	90
SU5(2,4,6-TBPh)	100	94	90
SU6(d14-Terphen)	75	94	90
IS Check	100	98	90
IS1 (d4-1,4-DiClBenz)	100	100	90
IS2 (d8-Naph)	100	100	90
IS3 (d10-Acenaph)	100	100	90
IS4 (d10-Phenanth)	100	100	90
IS5 (d12-Chrysene)	90	97	90
IS6 (d12-Perylene)	100	96	90
Sample RT/RRT	100	*	*
Napthalene			
Accuracy	100	96	90
Precision	100	99	90
No Group Matrix Effect	100	99	90
No Sample Matrix Effect	100	89	90
Tune Check	100	*	*
Overall ICAL Check	100	*	*
Overall CCAL Check	100	#	*
Overall Lab Blank Check	100	*	*

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-6

Completeness Summary M03A Treated Water PCB Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	Project to Date	PROJECT GOAL
Extract Holding Time Analysis Holding Time	100 100	100 100	100 100
12 Hour Window	100	100	100
SU Check - Column A	100	99	90
SU1 (DCBP) SU2 (TCMX)	100 100	88 97	NS NS
SU Check - Column B	100	98	90
SU1 (DCBP)	100	87 97	NS NS
SU2 (TCMX) SU Check - Column A or B	100 100	98	90
Aroclor 1242			
Accuracy	100	99	90
Precision	100	97	90
Overall ICAL Check	100	*	
Overall 1st CCAL Check	100	*	
Overall 2nd CCAL Check	100	*	
Overall Lab Blank Check	100	*	

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-7

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	PROJECT GOAL
ANALYTE: BARIUM		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: CADMIUM		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: CHROMIUM		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: COPPER		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: LEAD		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 86 100 100 100	95 95 NA 100 100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-7 (Continued)

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	PROJECT GOAL
ANALYTE: MANGANESE		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check ANALYTE: NICKEL	86 100 100 100 100	95 95 NA 100 100
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: SILVER		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: ZINC		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 86 100 100	95 95 NA 100 100
ANALYTE: MERCURY		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-7 (Continued)

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	PROJECT GOAL
ANALYTE:ARSENIC		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: SELENIUM		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-8

Completeness Summary M03A Treated Water Miscellaneous Parameters Analyses

SAMPLE DATE SET NUMBER	M03A0332 thru M03A0339	Project to Date	PROJECT GOAL
PARAMETER: TOC			
Analysis Hold Time MS Accuracy DUP Precision	100 100 100	100 100 100	100 NA NA
PARAMETER: OILS			
Analysis Hold Time MS Accuracy DUP Precision	100 100 100	100 100 100	100 NA NA
PARAMETER: TSS			
Analysis Hold Time MS Accuracy DUP Precision	100 NA 100	100 NA 100	100 NA NA

8.0 SITE MAINTENANCE

8.1 Summary of Activities

8.1.1 General Housekeeping

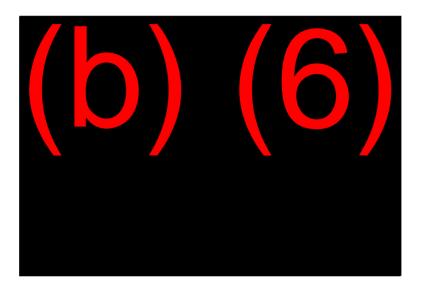
The site safety and housekeeping inspections and responses kept grounds safe and attractive for employees and visitors.

8.1.2 Purchasing

All purchases were covered by written requisitions and purchase orders. Purchase of chemicals is now reduced to groundwater treatment and insitu remediation.

A work release was issued to Layne Environmental Drilling to drill and complete four INT wells at the west end north of Gulf Pump Road and two INT wells in the landfill.

8.1.3 Equipment Maintenance


Routine preventive and production maintenance was performed on all equipment.

8.2 Visitors

The following visitors were recorded at the site during June:

June 3: Institute of Environmental Technology:

<u>June 5</u>:

Jim Thomson, AHA

Judith Black, EPA

Marc Jewett, Fermco/DOE Dennis Carr, Fermco/DOE

(b) (6) , BSCHOOL

June 6:

Marc Jewett, Fermco Dennis Carr, Fermco Judith Black, EPA

June 7:

John Cox, EBS

Greg Brewer, AATS Chip Boxley, Texas Tree Kenneth Kirsch, Texas Tree

<u>June 8</u>:

Jim Bonner, TAMU

Robin Jamail, TGLO

June 13:

Carol Bandy

June 14:

Dwayne Griffin, Texas Trees

Mike Pitre, Environgen

June 15: (b) (6) , BSCHOOL

Maureen Valenza, ACC

June 21: Jeff Herman, ALH

A.W. Breathwirt, Breathren Maure

Audry Hongland, ALH

June 23: Stephanie Hrabar, GEMS²

Clyde Brown, PSS Warren Franz, ARGO David High, BPA Ted Davis, Alliance

June 22: Bonny Crews, AEPT

(b) (6) resident

June 26: (b) (6) , BSCHOOL

<u>June 27</u>: (b) (6) , BSCHOOL

(b) (6) BSCHOOL

June 30: Al Goodlow, Barrett Station Chamber of Commerce

8.3 Emergency Equipment

8.3.1 Flood Gate Test

The flood gate was exercised on June 26, 1995, with one small leak detected at the threshold.

8.3.2 P-8 Auxiliary Pump

P-8 Auxiliary Pump has been converted to the lagoon ground cover vegetation sprinkler source. It has operated approximately 80 hours in June.

8.3.3 Fire Extinguishers

All fire extinguishers were inspected and certified.

8.4 Security

Smith Security provides 24-hour security at the FLTG site, including the south side of Gulf Pump Road; all site areas are checked hourly. No incidents reported by Security in June.

8.5 Operator Training

All training is documented and records are maintained on site.

8.6 Data Management

Data base is fully operational. Data is entered on a daily basis.

8.7 Personnel Monitoring

Results of personnel monitoring conducted during June are included in Table 8-1. A Tenax tube was set in the T-101 work area during personnel monitoring. These results are included in this table.

8.8 OVM System

Work areas are being monitored daily with Organic Vapor Monitor 580A.

8.9 Repository

Records from the June review are listed in Attachment 8A.

8.10 Meteorological Data

The meteorological data is generated on a weekly basis.

Rainfall data is listed in Table 8-2.

TABLE 8-1

On-Site Employee Contaminant Limits
(From OSHA 29 CFR 1910 Subpart Z)

	PEL	[1	7-Jun-95	2	7-Jun-95	3	7-Jun-95
	8 hour	WTPO		Well Mair	The state of the s	T-101	
Compound	PPM	% of PEL	PPM	% of PEL	PPM	% of PEL	PPM
		1 70 01 1 22	} ''' ''	/ 01 1 22		70 0. 1	FF1V1
Chloromethane	50	0.003	0.002	0.009	0.004	0.003	0.002
Bromomethane	5	0.000	0.000	0.000	0.000	0.004	0.000
Vinyl chloride	1	0.000	0.000	0.000	0.000	0.000	0.000
Chloroethane	1000	0.000	0.000	0.000	0.000	0.000	0.000
			0.000	0.000	0.000	0.000	0.000
Dichloromethane	50	0.007	0.003	0.003	0.001	0.002	0.001
Acetone	750	0.001	0.004	0.000	0.002	0.000	0.001
Carbon disulfide	10	0.000	0.000	0.000	0.000	0.002	0.000
1,1-Dichloroethene	5	0.000	0.000	0.000	0.000	0.000	0.000
1,1-Dichloroethane	100	0.000	0.000	0.000	0.000	0.001	0.001
trans-1,2-Dichloroethe	200	0.000	0.001	0.000	0.000	0.002	0.003
Chloroform	10	0.011	0.001	0.000	0.000	0.217	0.022
1,2-Dichloroethane	10	0.000	0.000	0.000	0.000	0.008	0.001
2-Butanone	200	0.000	0.001	0.000	0.000	0.000	0.000
1,1,1-Trichloroethane	350	0.000	0.000	0.000	0.000	0.000	0.000
Carbon Tetrachloride	5	0.000	0.000	0.000	0.000	0.031	0.002
Vinyl acetate	10	0.000	0.000	0.000	0.000	0.006	0.001
Bromodichloromethane		ļ	0.000		0.000		0.000
1,2-Dichloropropane	75	0.000	0.000	0.000	0.000	0.000	0.000
cis-1,3-Dichloropropen	1	0.000	0.000	0.000	0.000	0.000	0.000
Trichloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000
Dibromochloromethane			0.000		0.000		0.000
1,1,2-Trichloroethane	10	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	1	0.124	0.001	0.014	0.000	0.032	0.000
trans-1,3-Dichloroprop	1	0.000	0.000	0.000	0.000	0.000	0.000
2-Chloroethylvinyl ethe	r	1	0.000		0.000		0.000
Bromoform	0.5	0.000	0.000	0.000	0.000	0.000	0.000
4-Methyl-2-pentanone	50	0.000	0.000	0.000	0.000	0.000	0.000
2-Hexanone	5	0.000	0.000	0.000	0.000	0.000	0.000
Tetrachloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000
1,1,2,2-Tetrachloroet	1	0.000	0.000	0.000	0.000	0.000	0.000
Taluene	100	0.000	0.000	0.000	0.000	0.000	0.000
Chlorobenzene	10	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	100	0.000	0.000	0.000	0.000	0.000	0.000
Styrene	50	0.000	0.000	0.000	0.000	0.000	0.000
Xylene (total)	100	0.000	0.000	0.000	0.000	0.000	0.000
Hexane		L	0.006		0.001		0.001

TABLE 8-2
Rainfall Data for June, 1995

<u>Day</u>	Rain Total (Inches)
1	0.07
2	0.64
3	0.00
4	0.00
5	0.00
6	0.00
7	0.00
8	0.00
9	0.00
10	0.13
11	1.04
12	0.00
13	0.00
14	0.00
15	0.00
16	0.00
17	0.09
18	0.39
19	0.00
20	0.00
21	0.00
22	0.00
23	0.00
24	0.00
25	0.00
26	0.00
27	0.00
28	0.55
29	1.91
30	0.12
Total Rainfall	4.94

ATTACHMENT 8A

Repository Status Report: June, 1995

SITE.06 June, 1995

REPOSITORY STATUS REPORT: June, 1995

At the Rice University Library...

- 1. Remedial Investigation Report April, 1985
- 2. Remedial Investigation Report Appendices, Volume II, April, 1985
- 3. Remedial Investigation Report June, 1986 (Updated from April, 1985)
- 4. Remedial Investigation Report Appendices, Volume I, February, 1986 (Revised June, 86)
- 5. Remedial Investigation Report Appendices, Volume II, February, 1986 (Revised June, 1986)
- 6. Remedial Investigation Report Appendices, Volume III, February, 1986
- 7. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume I, December, 1986
- 8. 1986 Field Investigation and Supplemental Remedial Investigation Report French Limited Site Volume II, Appendices December, 1986
- 9. 1986 Field Investigation Hydrology Report, December 19, 1986
- 10. Endangerment Assessment Report February, 1987
- 11. Endangerment Assessment Report April 1987 (Updated from February, 1987)
- 12. Feasibility Study Report, March 1987
- 13. In Situ Biodegradation Demonstration Report Volume I Executive Summary, October 30, 1987 Revised 11-11-87
- 14. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume I, November 30, 1987
- 15. In Situ Biodegradation Demonstration Report Volume II, October 30, 1987 (Revised February 1, 1988 at Site only)
- 16. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume II, November 30, 1987 + Appendices

- 17. In Situ Biodegradation Demonstration Report Volume III Appendices, October 30, 1987
- 18. In Situ Biodegradation Demonstration Report Volume III, Appendices, Supplemental Report, November 30, 1987
- In Situ Biodegradation Demonstration Report French Limited Site, Volume IV October 30, 1987 + Appendices
- 20. In Situ Biodegradation Demonstration Supplemental Report French Limited Site, Volume IV November 30, 1987 + Appendices
- 21. In Situ Biodegradation Demonstration Report French Limited Site Volume V, October 30, 1987
- 22. In Situ Biodegradation Demonstration Report French Limited Site Volume V Appendices, November 30, 1987 Supplemental Report
- 23. In Situ Biodegradation Demonstration Report French Limited Site Volume VI Appendices, October 30, 1987
- 24. In Situ Biodegradation Demonstration Report French Limited Site Volume VII Appendices, October 30, 1987
- 25. In Situ Biodegradation Demonstration Report French Limited Site Volume VIII Appendices, October 30, 1987
- 26. In Situ Biodegradation Demonstration Report French Limited Site Volume IX Appendices, October 30, 1987
- 27. In Situ Biodegradation Demonstration Report French Limited Site Volume X Appendices, October 30, 1987
- 28. In Situ Biodegradation Demonstration Report French Limited Site Volume XI Appendices, October 30, 1987
- 29. In Situ Biodegradation Demonstration Report French Limited Site Volume XII Appendices, October 30, 1987
- 30. In Situ Biodegradation Demonstration Report French Limited Site Volume XIII Appendices, October 30, 1987
- 31. In Situ Biodegradation Demonstration Report French Limited Site Volume XIV Appendices, October 30, 1987

- 32. In Situ Biodegradation Demonstration Report French Limited Site Volume XV Appendices, October 30, 1987
- 33. In Situ Biodegradation Demonstration Report French Limited Site Volume XVI Appendices, October 30, 1987
- In Situ Biodegradation Demonstration Report French Limited Site Volume XVII Appendices, October 30, 1987
- 35. In Situ Biodegradation Demonstration Report French Limited Site Volume XVIII Appendices, October 30, 1987
- 36. Proposed In Situ Biodegradation Demonstration French Limited Site Phase III, April, 1987
- 37. In Situ Bioremediation Demonstration French Limited April, 1987 Monthly Report, Equipment Evaluation Phase IV
- 38. In Situ Bioremediation Demonstration French Limited May, 1987 Monthly Report, Equipment Evaluation Phase IV
- 39. In Situ Bioremediation Demonstration French Limited June, 1987 Monthly Report, Equipment Evaluation Phase IV
- 40. In Situ Bioremediation Demonstration French Limited July, 1987 Monthly Report, Equipment Evaluation Phase IV
- 41. In Situ Bioremediation Demonstration French Limited August, 1987 Monthly Report, Equipment Evaluation Phase IV
- 42. In Situ Bioremediation Demonstration French Limited November, 1987 Monthly Report, Equipment Evaluation Phase IV
- 43. In Situ Bioremediation Demonstration French Limited December, 1987 Monthly Report, Equipment Evaluation Phase IV
- 44. In Situ Bioremediation Demonstration French Limited January, 1988 Monthly Report, Equipment Evaluation Phase IV
- 45. In Situ Bioremediation Demonstration French Limited February, 1988 Monthly Report, Equipment Evaluation Phase IV
- 46. In Situ Bioremediation Demonstration French Limited March, 1988 Monthly Report, Equipment Evaluation Phase IV

- 47. In Situ Bioremediation Demonstration French Limited April, 1988 Monthly Report, Equipment Evaluation Phase IV
- 48. In Situ Biodegradation Demonstration French Limited May/June 1988 Monthly Report, Equipment Evaluation Phase IV
- 49. In Situ Bioremediation Demonstration French Limited July, 1988 Monthly Report, Equipment Evaluation Phase IV
- 50. In Situ Bioremediation Demonstration French Limited August, 1988 Monthly Report, Equipment Evaluation Phase IV
- 51. In Situ Bioremediation Demonstration French Limited September, 1988 Monthly Report, Equipment Evaluation Phase IV
- 52. Supplemental Biodegradation Equipment Evaluation French Limited Site Phase IV, September 26, 1988
- 53. In Situ Biodegradation Demonstration Phase III Quality Assurance Project Plan for French Limited Site, March, 1987
- 54. Addendum to Quality Assurance Project Plan for the French Limited Site In Situ Biodegradation Demonstration Phase III, February 16, 1990
- 55. Site Safety and Health Plan French Limited Site Phase III, April 1987 (Revision 2)
- 56. Remedial Action Plan Volume I April, 1990
- 57. Remedial Action Plan Volume I September, 1990 (Updated from April, 1990)
- 58. Remedial Action Plan Volume II Quality Assurance April, 1990
- 59. Remedial Action Plan Volume II Quality Assurance September, 1990 (Updated from April 1990) Revised June 3, 1991
- Remedial Action Plan Volume II Quality Assurance June, 1990
 Appendix A Quality Assurance Sampling Procedures and
 Appendix B Analytical Methods B.1 B.53, September 22, 1989
 Revised September 28, 1990
- 61. Remedial Action Plan Volume III Health and Safety, July 20, 1990

- 62. Remedial Action Plan Volume IV Spill and Volatile Organic Release Contingency Plan (April 6, 1990)
- 63. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, May, 1990
 Page v.i.3 Missing
- 64. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990, (Updated from May, 1990)
- 65. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume I, February 1,1990
- 66. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume II, February 1, 1990
- 67. 1988 Slough Investigation Report French Limited Site, October 1988
- 68. Ambient Air Impact Risk Assessment Report, May 5, 1989
- 69. Workplan for the Shallow Aquifer Pumping Tests for the French Limited Site, July 22, 1988
 Page 80 Missing
- 70. French Limited Site Hurricane Gilbert Preparation Report, October, 1988
- 71. Potable Water Well Installation Report French Limited Site, December 7, 1988
- 72. Bioresidue Fixation Alternatives Evaluation Report French Limited Site March 20, 1989
- 73. Hydrogeologic Characterization Report, March 1989
- 74. Hydrogeologic Characterization Report Appendices, March 1989
- 75. San Jacinto River May 19, 1989 Flood Event Report, June 1989
- Post San Jacinto River May 1989 Flood Event Soils and Water Analysis Program -Volume I, August 16, 1989
- 77. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume II Appendix A

- 78. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume III Appendix A, August 16, 1989
- 79. Riverdale Lake Area Remediation Program August 15, 1989
- 80. Flood and Migration Control Wall Design Report, August 16, 1989
- 81. Flood and Migration Control Wall Design Report Appendix C Access Way Design, September, 1989
- 82. North Pit Remediation Report French Limited Site, November 6, 1989
- 83. Installation Report for Flood and Migration Control Wall, January 8, 1990
- 84. Installation Report for Flood and Migration Control Wall Appendix A ENSR Site Logs
- 85. Installation Report for Flood and Migration Control Wall Appendix B Inspection Reports
- 86. Installation Report for Flood and Migration Control Wall Appendix C Pile Driving Inspection Report January 8, 1990
- 87. Flood Wall Gate Test Report French Limited Site, February 1990
- 88. French Limited Remediation Design Report Executive Summary Bioremediation/Shallow Aquifer, July, 1991
- Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume I of III -Summary Report and Appendices A-H, July 1991
- 90. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume II of III Appendices I-M, June 1991
- 91. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume III of III Appendices N-P, June 1991
- 92. Bioremediation Facilities Design Report Volume II of IV Appendices, Reports and Calculations (March 20, 1991)
- Bioremediation Facilities Design Report Volume III of IV Appendix E - Design Specifications (March 20, 1991)

- 94. Bioremediation Facilities Design Report Volume IV of IV Air Monitoring, March 20, 1991
- 95. Public Health Assessment for French Limited March 30, 1993 from U.S. Department of Health and Human Services
- 96. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 1, Report, Appendices A-E
- 97. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 2, Appendix F
- 98. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 3, Appendix F continued
- 99. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 4, Appendix G
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 5,
 Appendix H
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 6, Appendix H continued
- 102. Record of Public Meeting Regarding Remedial Investigation and Feasibility Study (5-21-87)
- 103. Summary of Remedial Alternative Selection 1988
- 104. Declaration for the Record of Decision 1988
- 105. Record of Public Meeting Regarding Remedial Investigation and Feasibility Study (2-11-88) (Updated from June 21, 1987)
- 106. Consent Decree between the Federal Government and the FLTG
- 107. French Limited Superfund Site Community Relations Revised Plan August, 1989 Jacob's Engineering
- 108. Results of the French Limited Task Group Survey (Goldman and Company) April, 1987
- 109. Goldman Public Relations Clipping Report

- 110. BioGEE International, Inc., Project Report Biotreatability Study Using Isolated Indigenous Organisms, April, 1994
- 111. Field Evaluation of Biodegradation at the French Limited Site (Phase II) Volume I
- 112. Laboratory Evaluation of Biodegradation at the French Limited Site
- 113. French Limited Site Focused Feasibility Study (May 1987)
- 114. Annual Groundwater Monitoring Report, December 1993, Report and Appendices A-B
- 115. Annual Groundwater Monitoring Report, December 1993, Appendices C-H
- DNAPL Study Remedial Alternative Selection and Feasibility Study Report,
 November 1994
- 117. Cell E and Cell D/F Remediation Verification Report
- 118. French Limited Wetlands Mitigation, Final Site Restoration Plan
- 119. French Limited Wetlands Mitigation, Site Selection Report
- 120. French Limited Wetlands Mitigation, 404 and 401 Permit Application, U.S. Army Corps of Engineers, Galveston, TX
- 121. Quality Assurance Report, February 15, 1993, Report No. QA93003
- 122. Quality Assurance Report, January 20, 1994, Report No. QA94001
- 123. Environmental Protection Agency, Region VI, Hazardous Waste Management Division, First Five Year Review (Type Ia), CERCLIS TXD-980514814, December 1994
- 124. ARCS, French Limited Site 1993, Annual Groundwater Sampling and Comparison Report, CH2M Hill, January, 1995
- 125. Annual Groundwater Monitoring Report, December, 1994, Report and Appendices A-G
- Superfund Preliminary Site Closeout Report CERCLIS TXD-980514814,
 September, 1994

- 127. Environmental Protection Agency, Split Sampling and Analysis for Cell D/F, French Limited Site, EPA Contract No: 68-W8-0112, March 1995
- 128. Monthly Progress Report, January 1992
- 129. Monthly Progress Report, January, 1992 Appendices A-C
- 130. Monthly Progress Report, January, 1992 Appendices E, F
- 131. Monthly Progress Report, January, 1992 Appendices G
- 132. Monthly Progress Report, February, 1992
- 133. Monthly Progress Report, February, 1992 Appendices A-B
- 134. Monthly Progress Report, February, 1992 Appendices C 1
- 135. Monthly Progress Report, February, 1992 Appendices C 2
- 136. Monthly Progress Report, February, 1992 Appendices D-E
- 137. Monthly Progress Report, March, 1992
- 138. Monthly Progress Report, March, 1992, Appendix A
- 139. Monthly Progress Report, April, 1992
- 140. Monthly Progress Report, April, 1992, Appendices A-B
- 141. Monthly Progress Report, May, 1992
- 142. Monthly Progress Report, May, 1992, Appendices A-B
- 143. Monthly Progress Report, June, 1992
- 144. Monthly Progress Report, June, 1992, Appendices A-B
- 145. Monthly Progress Report, July 1992
- 146. Monthly Progress Report, July 1992, Appendices A-B
- 147. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 1 of 3
- 148. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 2 of 3

- 149. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 3 of 3
- 150. Monthly Progress Report, August, 1992
- 151. Monthly Progress Report, August, 1992, Appendices A-B
- 152. Monthly Progress Report, September, 1992
- 153. Monthly Progress Report, September, 1992, Appendices A-B
- 154. Monthly Progress Report, October, 1992
- 155. Monthly Progress Report, October, 1992, Appendices A-B
- 156. Monthly Progress Report, November, 1992
- 157. Monthly Progress Report, November, 1992 Appendices A-B
- 158. Monthly Progress Report, December, 1992
- 159. Monthly Progress Report, December, 1992 Appendices A, B
- 160. Monthly Progress Report, January, 1993
- 161. Monthly Progress Report, February, 1993
- 162. Monthly Progress Report, March, 1993
- 163. Monthly Progress Report, April, 1993
- 164. Monthly Progress Report, May, 1993
- 165. Monthly Progress Report, June, 1993
- 166. Monthly Progress Report, July, 1993
- 167. Monthly Progress Report, August, 1993
- 168. Monthly Progress Report, September, 1993
- 169. Monthly Progress Report, October, 1993
- 170. Monthly Progress Report, November, 1993

171.	Monthly	Progress	Report,	December,	1993
------	---------	----------	---------	-----------	------

- 172. Monthly Progress Report, January, 1994
- 173. Monthly Progress Report, February, 1994
- 174. Monthly Progress Report, March, 1994
- 175. Monthly Progress Report, April, 1994
- 176. Monthly Progress Report, May, 1994
- 177. Monthly Progress Report, June, 1994
- 178. Monthly Progress Report, July, 1994
- 179. Monthly Progress Report, August, 1994
- 180. Monthly Progress Report, September, 1994
- 181. Monthly Progress Report, October, 1994
- 182. Monthly Progress Report, November, 1994
- 183. Monthly Progress Report, December, 1994
- 184. Monthly Progress Report, January, 1995
- 185. Monthly Progress Report, February, 1995
- 186. Monthly Progress Report, March, 1995
- 187. Monthly Progress Report, April, 1995
- 188. Monthly Progress Report, May, 1995

At the Crosby library...

- 1. Remedial Investigation Report June, 1986
- 2. Remedial Investigation Appendices Volume I June, I986 Revised from Feb. 1986
- 3. Remedial Investigation Appendices Volume II June, I986 Revised from Feb. 1986
- 4. Remedial Investigation Appendices Volume III February, 1986

Pages 1 and 2 of 10 Res. Engr Tab Missing Analytical Report Worksheet 7-8-9-10 Missing

Pages 1 and 2 of 6 Missing

Tab 9 H 1-8 Missing, H 11-19 Missing, Page 1 of 10 Missing

Page 3 Worksheet Missing

Tab 10 H 1-3 Missing, Page 3-6 of 6 Missing, Page 1-6 Missing

Tab 12 Page 2-10 of 10 Missing

- Field Investigation and Supplemental Remedial Investigation Report, Volume I, December, 1986
- 6. Field Investigation and Supplemental Remedial Investigation Report, Volume II, Appendices, December 1986
- 7. Field Investigation Hydrology Report, December 19, 1986
- 8. Feasibility Study Report, March 1987
- 9. Feasibility Study Report, March 1987
- 10. French Limited Site Focused Feasibility Study, May 1987
- 11. Endangerment Assessment Report February 1987
- 12. Endangerment Assessment Report April 1987
- 13. Endangerment Assessment Report April 1987
- 14. In Situ Biodegradation Demonstration Report Volume I Executive Summary October, 1987 (Revised 12-15-87)
- 15. In Situ Biodegradation Demonstration Report Volume II October 30, 1987

- 16. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume I, November 30, 1987 Missing Supplements to 5-6 and 7 to 10
- 17. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume II, November 30, 1987 + Appendices
- 18. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume III, November 30, 1987 + Appendices
- 19. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume IV, November 30, 1987 -Appendices
- 20. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume V Appendices, November 30, 1987
- 21. Results of the French Limited Task Group Survey (Goldman and Company)
 April 1987
- 22. Goldman Public Relations Clipping Report
- 23. Consent Decree between the Federal Government and the FLTG
- 24. Consent Decree between the Federal Government and the FLTG
- 25. Laboratory Evaluation of Biodegradation at the French Limited Site, December 1986.
- Field Evaluation of Biodegradation at the French Limited Site (Phase II) Volume I, March, 1987
- 27. Bioremediation Facilities Design Report Volume II of IV Appendices, Reports and Calculations March 20, 1991
- 28. Bioremediation Facilities Design Report Volume III of IV Appendix E Design Specifications March 20, 1991
- 29. Bioremediation Facilities Design Report Volume IV of IV Air Monitoring, March 20, 1991
- 30. Remedial Action Plan Volume I, September 28, 1990
- 31. Remedial Action Plan Volume II Quality Assurance, Revised June 3, 1991

- 32. Remedial Action Plan Volume II Appendix A Quality Assurance Sampling Procedures and Appendix B Analytical Methods B.1 B.53, September 28, 1990
- 33. Remedial Action Plan Volume III Health and Safety, July 20, 1990
- 34. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990
- 35. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990
- 36. Hydrogeologic Characterization Report, March 1989
- 37. Hydrogeologic Characterization Report Appendices, March 1989
- 38. Supplemental Biodegradation Equipment Evaluation French Limited Site Phase IV, September 26, 1988
- 39. Equipment Evaluation Phase IV Report French Limited Site: Volume I, February 1, 1990
- 40. Equipment Evaluation Phase IV Report French Limited Site: Volume II, February 1, 1990
- 41. Site Safety and Health Plan French Limited Site Phase III, April 1987 (Revision 2)
- 42. San Jacinto River May 19, 1989 Flood Event Report, June 1989
- 43. Post San Jacinto River May 1989 Flood Event Soils and Water Analysis Program Volume I, August 16, 1989
- 44. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume II, Appendix A
- 45. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume III, Appendix A, August 16, 1989
- 46. Slough Investigation Report French Limited Site, October 1988
- 47. Flood and Migration Control Wall Design Report, August 16, 1989

MONTHLY PROGRESS REPORT Site Maintenance

48.	Flood and Migration Control Wall Design Report (Flood is spelled incorrectly on
	Volume Cover) + Appendix C - Access way Design September 1989

- 49. Installation Report for Flood and Migration Control Wall January 8, 1990
- 50. Installation Report for Flood and Migration Control Wall Appendix A ENSR Site Logs
- 51. Installation Report for Flood and Migration Control Wall Appendix B Inspection Reports
- Installation Report for Flood and Migration Control Wall
 Appendix C Pile Driving Inspection Report January 8, 1990
- 53. Flood Wall Gate Test Report French Limited Site, February 1990
- 54. North Pit Remediation Report French Limited Site, November 6, 1989
- Workplan for the Shallow Aquifer Pumping Tests for the French Limited Site, July
 1988
 (Additional Title Pumping Test Program for Shallow Alluvial Aquifer Zone)
- 56. French Limited Site Hurricane Gilbert Preparation Report October, 1988
- 57. Riverdale Lake Area Remediation Program, August 15, 1989
- 58. Addendum to Quality Assurance Project Plan for the French Limited Site In Situ Biodegradation Demonstration Phase III, February 16, 1990
- 59. Potable Water Well Installation Report French Limited Site, December 7, 1988
- 60. Bioresidue Fixation Alternatives Evaluation Report French Limited Site March 20, 1989
- 61. Ambient Air Impact Risk Assessment Report, May 5, 1989
- 62. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume I of III Summary Report and Appendices A-H, July 1991
- 63. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume II of III Appendices I-M, June 1991
- 64. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume III of III Appendices N-P, June 1991

- 65. French Ltd. Remediation Design Report Executive Summary Bioremediation Shallow Aquifer July 1991
- 66. BioGEE International, Inc., Project Report Biotreatability Study Using Isolated Indigenous Organisms, April 15, 1994
- 67. Black EPA Binder
- 68. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 1, Report, Appendices A-E
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 2, Appendix F
- 70. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 3 Appendix F continued
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 4, Appendix G
- 72. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 5, Appendix H
- 73. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 6, Appendix H continued
- 74. Equipment Evaluation Phase IV Report November, 1987 Monthly Report
- 75. Equipment Evaluation Phase IV Report December, 1987 Monthly Report
- 76. Microfiche Field Reports 1988 -small box
- 77. Annual Groundwater Monitoring Report, December 1993, Report and Appendices A-B
- 78. Annual Groundwater Monitoring Report, December 1993, Appendices C-H
- 79. DNAPL Study Remedial Alternative Selection and Feasibility Study Report, November 1994
- 80. Cell E and Cell D/F Remediation Verification Report
- 81. French Limited Wetlands Mitigation, Final Site Restoration Plan

- 82. French Limited Wetlands Mitigation, Site Selection Report
- 83. French Limited Wetlands Mitigation, 404 and 401 Permit Application, U.S. Army Corps of Engineers, Galveston, TX
- 84. Quality Assurance Report, February 15, 1993, Report No. QA93003
- 85. Quality Assurance Report, January 20, 1994, Report No. QA94001
- 86. Environmental Protection Agency, Region VI, Hazardous Waste Management Division, First Five Year Review (Type Ia), CERCLIS TXD-980514814, December 1944
- 87. ARCS, French Limited Site 1993, Annual Groundwater Sampling and Comparison Report, CH2M Hill, January, 1995
- 88. Annual Groundwater Monitoring Report, December, 1994, Report and Appendices A-G
- 89. Superfund Preliminary Site Closeout Report CERCLIS TXD-090514814, September, 1994
- Environmental Protection Agency, Split Sampling and Analysis for Cell D/F,
 French Limited Site, EPA Contract No: 68-W8-0112, March 1995
- 91. Monthly Progress Report, January, 1992
- 92. Monthly Progress Report, January, 1992, Appendices A-C
- 93. Monthly Progress Report, January, 1992, Appendices E-F
- 94. Monthly Progress Report, January, 1992, Appendix G
- 95. Monthly Progress Report, February, 1992
- 96. Monthly Progress Report, February, 1992, Appendices A-B
- 97. Monthly Progress Report, February, 1992, Appendices C 1
- 98. Monthly Progress Report, February, 1992 Appendices C 2
- 99. Monthly Progress Report, February, 1992, Appendices D-E
- 100. Monthly Progress Report, March, 1992

- 101. Monthly Progress Report, March, 1992, Appendix A
- 102. Monthly Progress Report, April, 1992
- 103. Monthly Progress Report, April, 1992, Appendices A-B
- 104. Monthly Progress Report, May, 1992
- 105. Monthly Progress Report, May, 1992, Appendices A-B
- 106. Monthly Progress Report, June, 1992
- 107. Monthly Progress Report, June, 1992, Appendices A-B
- 108. Monthly Progress Report, July, 1992
- 109. Monthly Progress Report, July, 1992, Appendices A-B
- 110. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 1 of 3
- 111. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 2 of 3
- 112. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 3 of 3
- 113. Monthly Progress Report, August, 1992
- 114. Monthly Progress Report, August, 1992, Appendices A-B
- 115. Monthly Progress Report, September, 1992
- 116. Monthly Progress Report, September, 1992, Appendices A-B
- 117. Monthly Progress Report, October, 1992
- 118. Monthly Progress Report, October, 1992, Appendices A-B
- 119. Monthly Progress Report, November, 1992
- 120. Monthly Progress Report, November, 1992, Appendices A-B
- 121. Monthly Progress Report, December, 1992
- 122. Monthly Progress Report, December, 1992, Appendices A-B

123. Monthly Progress Report, January, 199	23.	Monthly	Progress	Report,	January,	. 199
--	-----	---------	----------	---------	----------	-------

- 124. Monthly Progress Report, February, 1993
- 125. Monthly Progress Report, March, 1993
- 126. Monthly Progress Report, April, 1993
- 127. Monthly Progress Report, May, 1993
- 128. Monthly Progress Report, June, 1993
- 129. Monthly Progress Report, July, 1993
- 130. Monthly Progress Report, August, 1993
- 131. Monthly Progress Report, September, 1993
- 132. Monthly Progress Report, October, 1993
- 133. Monthly Progress Report, November, 1993
- 134. Monthly Progress Report, December, 1993
- 135. Monthly Progress Report, January, 1994
- 136. Monthly Progress Report, February, 1994
- 137. Monthly Progress Report, March, 1994
- 138. Monthly Progress Report, April, 1994
- 139. Monthly Progress Report, May, 1994
- 140. Monthly Progress Report, June, 1994
- 141. Monthly Progress Report, July, 1994
- 142. Monthly Progress Report, August, 1994
- 143. Monthly Progress Report, September, 1994
- 144. Monthly Progress Report, October, 1994

MONTHLY PROGRESS REPORT Site Maintenance

FLTG, Incorporated

- 145. Monthly Progress Report, November, 1994
- 146. Monthly Progress Report, December, 1994
- 147. Monthly Progress Report, January, 1995
- 148. Monthly Progress Report, February, 1995
- 149. Monthly Progress Report, March, 1995
- 150. Monthly Progress Report, April, 1995
- 151. Monthly Progress Report, May, 1995

12 Large Brown Folders:

- Administrative Record Index 2 folders
 Administrative Record 09-26-79 thru 05-29-83
 Administrative Record 06-03-83 thru 11-28-83
 Administrative Record 02-28-84
 Administrative Record 03-09-84
 Technical Comments on Remediation Investigation Report 2-84
 Supplemental Investigation Resource Engr. 1-84
 Administrative Record 3-9-84
- Administrative Record 08-31-84
 Administrative Record 10-29-84 thru 01-22-85
 French Ltd. Technical and Regulatory Concepts for In-Place Closure, 09-84
 Supplementary Investigation, May 1984
 French Ltd. Field Activities Work Plan, February 1985
 Supplementary Investigation Attachments, May 1985
- Administrative Record 02-04-85
 Remedial Investigation, Vol. I Report, April 1985
 Remedial Investigation, Vol. II Appendices, April 1985
- Administrative Record 04-08-85 thru 11-26-85
 Administrative Record 02-14-86 thru 04-04-86
 Technical Report for Resource Engineering, 12-03-85
 Appendix QA Program for French Ltd., 12-18-85
 1985 Field Investigation Report Appendices, January, 1986

 1985 Field Investigation Report , January, 1986

- Administrative Record 04-01-86
 Remedial Investigation Report Appendices, Vol. II, April, 1986
- 6. Administrative Record 4-1-86
- 7. Administrative Record 05-08-86 thru 05-12-86
 Administrative Record 06-01-86
 Administrative Record 01-05-87
 Remedial Investigation Report, June 1986
 Laboratory Evaluation of Biodegradation, 12-86
 1986 Field Investigation Hydrology Report, 12-86
 Endangerment Assessment Report, 2-87
- 8. Feasibility Study, March 1987
- Administrative Report 03-11-87 thru 03-25-87
 Administrative Report 4-1-87
 Administrative Report 4-7-87
 In Situ Biodegradation Demonstration Phase III QA Project Plan 3-87
 Endangerment Assessment Report, 4-87
 Proposed In Situ Biodegradation Demonstration French Limited Site Phase III 4-87
- 10. Administrative Report 4-15-87 thru 5-I-87 Administrative Report 5-21-87 thru 7-2-87 French Limited Focused Feasibility Study, ERT 5-87 Revised Field Evaluation of Biodegradation at French Site Phase II Vol. I -Revised 7-10-87
- 11. Administrative Report 7-20-87 11-23-87 Administrative Report Undated Documents 000122-000134 In Situ Biodegradation Demonstration Report Vol. I Executive Summary 10-87 French Limited Site Work Plan Vol. I Project Activities and Sample Plan
- Texas Air Control Board Regulations I thru IX Standard Exemption List Application for Permit

During the month of **June**, the status of both libraries have been reviewed and the above information found to be accurate.

9.0 WETLANDS RESTORATION

9.1 Summary of Activities and Progress

Conducted safety meetings at the start of each work shift; inspected all equipment for safety compliance each shift; used daily lottery ticket safety awareness program.

Updated site work plan based on field progress.

Some dewatering was required after each significant rainfall; generally dry weather allowed good excavation progress.

Completed flow channel excavation.

Completed final grading and topsoil application.

Opened the flow channels to the river.

Started acclamation of the saline marsh zone in preparation for re-vegetation.

Conducted five site tours for interested parties.

Continued work on a video of the project; interviewed key players on the project.

Reviewed the project status, progress, and issues with the agency review committee; the agencies are satisfied with site progress.

Sampled and analyzed the 80 yd³ of soils excavated from the affected area; this soil was classified as class II, non-hazardous; the soil was profiled, manifested and shipped to an approved waste disposal site.

FLTG, Incorporated

9.2 Problem Areas and Solutions

Problem

Solution

Safety awareness

Daily safety meeting; lottery ticket program; frequent equipment inspections.

Excavation in wet, soft areas.

Revise work schedule to allow drainage; pump water on "off" days.

Affected soil in excavation area.

Isolate area; sample and analyze affected soils; relocate tidal channel; review response options with City of Baytown.

9.3 Problems Resolved

Problem

Solution

Excavation during wet weather.

Completed all excavation and other civil work.

9.4 Deliverables Submitted

June, 1995, Monthly Report.

9.5 Upcoming Events and Activities

Daily safety program.

Saturate marsh zone.

Re-vegetate marsh zone.

MONTHLY PROGRESS REPORT Wetlands Restoration

French Ltd. Project

FLTG, Incorporated

Support Baytown response plan for the remaining affected soil.

Continue re-vegetation.

Develop forecast of maintenance requirements.